Skip to main content

Abstract

Following the commencement of the industrial revolution it became possible for human beings to manipulate the physics and chemistry of their environment on a grand scale. This led to the appearance of a large number of man-made disorders, for many of which the causative agent is easily established; the mechanism whereby the body reacts to these agents is, however, not sufficiently understood. Decompression sickness is such a disorder. It is provoked by our ability to change the pressure and chemical composition of the gases we breathe. One procedure for complete prevention of decompression sickness is therefore to not venture outside the limits of air composition and partial pressures normally encountered on the surface of the earth. A second way to eliminate the harmful effects of decompression sickness is to understand the responsible mechanisms and from this understanding to construct safe procedures. It is, of course, this second possibility that is examined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alnor, P. C. 1963. Chronic changes in the bone structure of divers. Bruns. Beitr. Klin. Chir 207: 475–485.

    PubMed  CAS  Google Scholar 

  • Bateman, J. B. 1951. Review of data on value of pre-oxygenation in prevention of decompression sickness. In: Decompression Sickness, edited by J. F. Fulton. Philadelphia: W. B. Saunders, Chap. 9. Pt. 1.

    Google Scholar 

  • Beckmann, E. L. 1976. Recommendations for improved air decompression schedules for commercial diving. Sea Grant Tech. Rep. UNIHI-SEA Grant-TR-76-02.

    Google Scholar 

  • Behnke, A. R. 1951. Decompression sickness following exposure to high pressures. In: Decompression Sickness, edited by J. F. Fulton. Philadelphia: W. B. Saunders, p. 53–89.

    Google Scholar 

  • Behnke, A. R. 1967. The isobaric (oxygen window) principle of decompression. In: Trans. Third Annual Conference of the Marine Technology Society. Washington, DC: Marine Technol. Soc.

    Google Scholar 

  • Bert, P. 1878. Barometric Pressure, transl. by M. A. and F. A. Hitchcock. Columbus, OH: College Book Co., 1943, p. 5. (Republ. Bethesda, MD: Undersea Medical Society, 1978.)

    Google Scholar 

  • Blenkarn, G. D., C. Aquadro, B. A. Hills, and H. A. Saltzman 1971. Urticaria following sequential breathing of various inert gases at 7 ATA: a possible manifestation of gas-induced osmosis. Aerosp. Med 42: 141–146.

    PubMed  CAS  Google Scholar 

  • Boulton, G. O. 1942. The use of air locks. J. Inst. Eng. Aust. 14(1).

    Google Scholar 

  • Boycott, A. E., G. C. C. Damant. and J. S. Haldane 1980. Prevention of compressed air illness. J. Hyg 8: 342–443.

    Article  Google Scholar 

  • Chryssanthou, C. P. 1973. Studies on the mechanism and prevention of decompression sickness. Progress Report of the Physiology Program. Arlington, VA: Office of Naval Research, p. 7–8.

    Google Scholar 

  • Damant, G. C. C. (n.d.). Calculating Decompressions on the Late Professor J. S. Haldane’s System.London: Siebe, Gorman and Co., Ltd.

    Google Scholar 

  • Davis, R. H. 1935. In: Siebe, Gorman & Co. Decompression Tables. London: St. Catharine Press.

    Google Scholar 

  • Davis, R. H. 1981. Deep Diving and Submarine Operations ( 8th Ed. ). Gwent, Wales, U.K.: Siebe, Gorman and Co., Ltd.

    Google Scholar 

  • Des Granges, M. 1956. Standard Air Decompression Table. Res. Rep. 5–57. Washington, DC: U.S. Navy Experimental Diving Unit.

    Google Scholar 

  • Dwyer, J. V. 1955. Calculation of Air Decompression Tables. Res. Rep. 4–56. Washington, DC: U.S. Navy Experimental Diving Unit.

    Google Scholar 

  • Eaton, W. J.,and H. V. Hempleman 1962. The incidence of bends in goats, after direct surfacing from raised pressures of air. Rep. 209. London: Medical Research Council, R.N. Personnel Research Committee, Underwater Physiology Sub-Committee.

    Google Scholar 

  • Epstein, P. S., and M. S. Plesset 1950. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys 18: 1505–1509.

    Article  CAS  Google Scholar 

  • Evans, A., and D. N. Walder 1969. Significance of gas macronuclei in the aetiology of decompression sickness. Nature (London) 222: 251–252.

    Article  CAS  Google Scholar 

  • Flynn, E. T., and C. J. Lambertsen 1971. Calibration of inert gas exchange in the mouse. In: Underwater Physiology IV. Proceedings of the Fourth Symposium on Underwater Physiology, edited by C. J. Lambertsen. New York: Academic Press, p. 179–191.

    Google Scholar 

  • French, G. R. W. 1916. Diving operations in connection with the salvage of the USS “F-4.” U.S. Nav. Med. Bull. 10: 74–91.

    Google Scholar 

  • Golding, F. C., P. D. Griffiths, W. D. M. Paton, D. N. Walder. and H. V. Hempleman1960. Decompression sickness during construction of the Dartford Tunnel. Br. J. Ind. Med 17: 167–180.

    PubMed  CAS  Google Scholar 

  • Graves, D. J., J. Idicula, C. J. Lambertsen. and J. A. Quinn 1973. Bubble formation resulting from counter-diffusion supersaturation: A possible explanation for isobaric inert gas ‘urticaria’ and vertigo. Phys. Med. Biol 18: 256–264.

    Article  PubMed  CAS  Google Scholar 

  • Halley, E. 1717. The art of living under water. Phil. Trans. R. Soc. London.

    Google Scholar 

  • Hamilton, R. W., J. B. MacInnis, A. D. Noble, and H. R. Sckreiner 1966. Saturation diving at 650 feet. Technical Memorandum B-411. Tonawanda, NY: Ocean Systems.

    Google Scholar 

  • Harvey, E. N. 1945. Decompression sickness and bubble formation in blood and tissues. Bull. N.Y. Acad. Med 21: 505–536.

    PubMed  CAS  Google Scholar 

  • Harvey, E. N. 1951. Physical factors in bubble formulation. In: Decompression Sickness, edited by J. F. Fulton. Philadelphia: W. B. Saunders, p. 90 - 114.

    Google Scholar 

  • Hawkins, J. A., C. W. Shilling, and R. A. Hansen 1935. A suggested change in calculating decompression tables for diving. U.S. Nav. Med. Bull 33: 327–338.

    Google Scholar 

  • Hempleman, H. V. 1952. Investigation into the decompression tables. A new theoretical basis for the calculation of decompression tables. Rep. I II, Pt. A. London: Medical Research Council, R.N. Personnel Research Committee, Underwater Physiology Sub-Committee.

    Google Scholar 

  • Hempleman, H. V. 1957. Investigation into the decompression tables. Further basic facts on decompression sickness. Rep. 168. London: Medical Research Council, R.N. Personnel Research Committee. Underwater Physiology Sub-Committee.

    Google Scholar 

  • Hempleman, H. V. 1963. Tissue inert gas exchange and decompression sickness. In: Proceedings of the Second Symposium on Underwater Physiology, edited by C. J. Lambertsen and L. J. Greenbaum. Washington, DC: Natl. Acad. Sci./Natl. Res. Council.

    Google Scholar 

  • Herget, R. 1948. Recent observations of barotraumatic chronic joint complaints in divers. Arch. Klin. Chir 261: 330–360.

    Article  Google Scholar 

  • Hills, B. A. 1966. A thermodynamic and kinetic approach to decompression sickness. Adelaide: Libraries Board of South Australia. Thesis.

    Google Scholar 

  • Ikels, K. G. 1970. Production of gas bubbles in fluids by tribonucleation. J. Appl. Physiol 28: 524–527.

    Google Scholar 

  • Jaminet, A. 1871. Physical effects of compressed air and of the causes of pathological symptoms produced on man, by increased atmospheric pressure employed for the sinking of piers in the construction of the Illinois and St. Louis bridge over the Mississippi River at St. Louis, Missouri. St. Louis: Ennis.

    Google Scholar 

  • Keays, F. L. 1909. Compressed air illness, with a report of 3,692 cases. Publ. Cornell Univ. Med. Coll 2: 1–55.

    Google Scholar 

  • Keays, F. L. 1912. Compressed-air Illness. Am. Labor. Legisl. Rev 2: 192–205.

    Google Scholar 

  • Kenyon, D. J., M. Freitag. and M. R. Powell 1974. Efficient decompression procedure for 1000 foot diving. Undersea Biomed. Res. 1: A7.

    Google Scholar 

  • Krogh, A. 1918. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J. Physiol 52: 391.

    Google Scholar 

  • Laurens, P. 1964. Considerations sur l’origine des bruits du coeur. Acta Cardiol. (Brux.) 19: 327–344.

    CAS  Google Scholar 

  • Liebermann, L. 1957. Air bubbles in water. J. Appl. Phys 28: 205–211.

    Article  CAS  Google Scholar 

  • Loeschcke, V. H. 1956. Über die Diffusion von Gas in mit Gas untersättigte Lösungen mit Durchrechnung biologischer Beispiele. Z. Naturforsch 11B: 613–620.

    Google Scholar 

  • Manley, D. M. J. P. 1960. Change of size of air bubbles in water containing a small dissolved air content. Br. J. Appl. Phys 11: 38–42.

    Article  CAS  Google Scholar 

  • Martin, K. J., and G. Nichols 1971. Changes in platelets in man after simulated diving. Rep. 5/71. Orpington, Kent, England: R. N. Physiological Laboratory.

    Google Scholar 

  • Medical Research Council Decompression Sickness Panel 1966. Bone lesions in compressed air workers with special reference to men who worked on the Clyde Tunnels 1958 to 1963. J. Bone Joint Surg. (Lond.) 48B: 207–235.

    Google Scholar 

  • Miller, J. W. (editor) 1979. NOAA Diving Manual. Washington DC: National Oceanic and Atmospheric Administration, U.S. Dept. of Commerce.

    Google Scholar 

  • Nichols, G. 1979. Changes in erythrocyte sedimentation associated with saturation diving. Annual Scientific Meeting, European Union of Biological Sciences Fifth Scientific Meeting, Bergen, Norway.

    Google Scholar 

  • Ohta, Y., and O. Shigeto1974. Symposium on Dysbaric Osteonecrosis, edited by E. L. Beckmann and D. H. Elliott. Washington, DC: National Institute of Occupational Safety and Health.

    Google Scholar 

  • Palmer, A. C., W. F. Blakemore, J. E. Payne, and A. Sillence 1978. Decompression sickness in the goat: nature of brain and spinal cord lesions at 48 hours. Undersea Biomed. Res 5: 276–286.

    Google Scholar 

  • Paton, W. D. M., and D. N. Walder 1954. Compressed air illness—An investigation during the construction of the Tyne Tunnel, 1948/1950. Spec. Rep., Ser. No. 281. London: Medical Research Council.

    Google Scholar 

  • Perl, W. 1962. Heat and matter distribution in body tissues and the determination of tissue blood flow by local clearance methods. J. Theor. Biol 2: 201–235.

    Article  CAS  Google Scholar 

  • Perl, W., H. Rackow, E. Salanitre, G. L. Wolf, and R. M. Epstein 1965. Inter-tissue diffusion effect for inert fat-soluble gases. J. Appl. Physiol 20: 621–627.

    PubMed  CAS  Google Scholar 

  • Philp, R. B., P. Schacham. and C. W. Gowdey 1971. Involvement of platelets and microthrombi in experimental decompression sickness; similarities with disseminated intra-vascular coagulation. Aerosp. Med 42: 494–502.

    PubMed  CAS  Google Scholar 

  • Rahn, H., and W. O. Fenn 1955. A Graphical Analysis of the Respiratory Gas Exchange. Washington, DC: Am. Physiol. Soc.

    Google Scholar 

  • Rashbass, C. R. 1955. Investigation into the decompression Tables. Rep. VI New Tables. Rep. 151. London: Medical Research Council, R.N. Personnel Research Committee, Underwater Physiology Sub-Committee.

    Google Scholar 

  • Rozsahegyi, I. 1959. The late consequences of the neurological forms of decompression sickness. Br. J. Ind. Med 16: 311–317.

    PubMed  CAS  Google Scholar 

  • Rubissow, G. J., and R. S. Mackay 1974. Decompression study and control using ultrasonics. Aerosp. Med 45: 473–478.

    PubMed  CAS  Google Scholar 

  • Spencer, M. P., and S. D. Campbell 1968. The development of bubbles in the venous and arterial blood during hyperbaric decompression. Bull. Mason Clin 22: 26–32.

    Google Scholar 

  • Stilson, G. D. 1915. Report on deep diving tests-USN. Washington, DC: U.S. Department of the Navy, Bur. of Construction and Repair.

    Google Scholar 

  • U.S. Navy 1978. U.S. Navy Diving Manual (Change 2), Air Diving. Washington, DC: U.S. Navy Dept., Vol. 1. (NAVSEA 0994-LP-001-9010.)

    Google Scholar 

  • Underwater Engineering Group 1968. Air Diving Tables. London: Her Majesty’s Stationery Office.

    Google Scholar 

  • Vanderaue, O. E., E. S. Brinton. and R. J. Keller 1945. Surface decompression and testing of decompression tables with safety limits for certain depths and exposures. Res. Rep. Washington, DC: U.S. Navy Experimental Diving Unit.

    Google Scholar 

  • Whitaker, D. M., L. R. Blinks, W. E. Berg, V. C. Twitty. and M. Harris 1945. Muscular activity and bubble formation in animals decompressed to simulated altitudes. J. Gen. Physiol 28: 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Workman, R. D. 1965. Calculation of decompression schedules for nitrogen-oxygen and helium-oxygen dives. Res. Rep. 6–65. Washington, DC: U.S. Navy Experimental Diving Unit.

    Google Scholar 

  • Yarbrough, O. D. 1937. Calculation of decompression tables. Res. Rep. Washington, DC: U.S. Navy Experimental Diving Unit.

    Google Scholar 

  • Yount, D. E. 1978. Responses to the twelve assumptions presently used for calculating decompression schedules. In: Decompression Theory. Bethesda, MD: Undersea Medical Society. (Decompression Workshop. )

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hempleman, H.V. (1984). Decompression Theory. In: Shilling, C.W., Carlston, C.B., Mathias, R.A. (eds) The Physician’s Guide to Diving Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2671-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2671-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9663-8

  • Online ISBN: 978-1-4613-2671-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics