Advertisement

Physiology of Diving

  • N. R. Anthonisen
  • Claes E. G. Lundgren
  • A. J. Påsche
  • Delbert E. Evans
  • Peter B. Bennett
  • Albert R. BehnkeJr.
  • William P. Fife
  • C. Gresham Bayne
  • Suk Ki Hong
  • Mark E. Bradley
  • Joseph C. FarmerJr.
  • Jo Ann S. Kinney
  • Donald D. Hickey

Abstract

The significant subdivisions of lung or respiratory system volume are functional residual capacity, residual volume, and total lung capacity; these are shown in figure III-1. Functional residual capacity (FRC) is the volume of gas in the respiratory system at the end of a normal expiration. Residual volume (RV) is the gas volume in the system at maximal expiration, and total lung capacity (TLC) is the gas volume at maximal inspiration. Vital capacity (VC), the maximum amount of gas an individual can move, is the difference between TLC and RV. The determinants of these subdivisions of lung volume are shown for a young man in figure III-2, which plots the passive pressure-volume characteristics of the lung, the chest wall, and the total respiratory system.

Keywords

Decompression Sickness Functional Residual Capacity Total Lung Capacity Naval Medical Research Institute Nitrogen Narcosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Anderson. H. T. 1967. Cardiovascular adaptations in diving mammals. Am. Heart J. 74: 255.Google Scholar
  2. Anthonisen, N. R., M. E. Bradley, J. Vorosmarti, and P. G. Linaweaver 1971. Mechanics of breathing with helium-oxygen and near-oxygen mixtures in deep saturation diving. In: Underwater Physiology IV. Proceedings of the Fourth Symposium on Underwater Physiology, edited by C. J. Lambertsen. New York: Academic Press, p. 339–346.Google Scholar
  3. Anthonisen, N. R., G. Utz, M. H. Kryger, and J. S. Urbanetti 1976. Exercise tolerance at 4 and 6 ATA. Undersea Biomed. Res. 3: 95–102.PubMedGoogle Scholar
  4. Clark, J. M., R. Gelfand, C. D. Puglja, and C. J. Lambertsen 1978. Work capability and physiological effects in He-02 excursions to pressures of 400–800–1200 and 1600 feet of sea water. Philadelphia: Univ. of Pennsylvania Medical Center, Institute for Environmental Medicine, p. E14–1–E14–34.Google Scholar
  5. Cumming, G., J. Crank, K. Horsfield. and I. Parker 1966. Gaseous diffusion in the airways of the human lung. Respirat. Physiol. 1: 58–74.Google Scholar
  6. Denison, D. M., D. A. Warren, and J. B. West 1971. Airway structure and alveolar emptying in the lungs of sea lions and dogs. Respirat. Physiol. 13: 253–260.Google Scholar
  7. Doell, D., M. Zutter, and N. R. Anthonisen 1973. Ventilatory responses to hypercapnia and hypoxia at l and 4 ATA. Respirat. Physiol. 18: 338–346.Google Scholar
  8. Dwyer, J., H. A. Saltzman, and R. O’Bryan 1977. Maximal physical work capacity of man at 43.4 ATA. Undersea Biomed. Res. 4: 359–473.PubMedGoogle Scholar
  9. Engel, L. A., L. D. H. Wood, G. Utz, and P. T. Macklem 1973. Gas mixing during inspiration. J. Appl. Physiol. 35: 18–24.PubMedGoogle Scholar
  10. Harrison, R. J., and J. D. W. Tomlison 1960. Normal and experimental diving in the common seal (Phoca vitulina). Mammalia 24: 386.Google Scholar
  11. James, J. E. 1969. Extra alveolar air resulting from submarine escape training. Rep. 550 Groton, CT: U.S. Navy Submarine Medical Center.Google Scholar
  12. Lally. D. A., F. W. Zechman, and R. A. Tracy 1974. Ventilatory responses to exercise in divers and nondivers. Respirat. Physiol. 20: 117–129.Google Scholar
  13. Lanphier, E. H. 1963. Influence of increased ambient pressure upon alveolar ventilation. In: Underwater Physiology II. Proceedings of the Second Symposium on Underwater Physiology, edited by C. J. Lambertsen and L. J. Greenbaum. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 124–133. Publication 1181.Google Scholar
  14. Lanphier, E. H. 1965. Underwater physiology. E. Overinflation of lungs. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: American Physiological Society, Sect. 3, Vol. II, p. 1189–1230.Google Scholar
  15. Lanphier, E. H. 1975. Pulmonary function. In: The Physiology and Medicine of Diving and Compressed Air Work ( 2nd ed. ), edited by P. B. Bennett and D. H. Elliott. Baltimore: Williams & Wilkins, p. 102–154.Google Scholar
  16. Liebow, A. A., J. E. Stark, J. Vogel, and K. E. Schafer 1959. Intrapulmonary trapping in submarine escape training casualties. U.S. Armed Forces Med. J. 10: 265.PubMedGoogle Scholar
  17. Linnarsson, D., and C. M. Hesser 1978. Dissociated ventilatory and central nervous responses to CO: at raised N2 pressure. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 45: 756–761.Google Scholar
  18. Macklem, P. T., and J. Mead 1968. Factors determining expiratory flow in dogs. J. Appl. Physiol. 25:159– 169.Google Scholar
  19. Mann, J., C. A. Bradley, and N. R. Anthonisen 1978. Occlusion pressure in acute bronchospasm induced by methylcholine. Respirat. Physiol. 33: 339–347.Google Scholar
  20. Martin, R. R., M. Zutter, and N. R. Anthonisen 1972. Pulmonary gas exchange in dogs breathing SF 6 at 4 ATA. J. Appl. Physiol. 33: 86–92.PubMedGoogle Scholar
  21. Milic-Emili, J., and J. M. Tyler 1963. Relation between worker output of respiratory muscles and C02 tension. J. Appl. Physiol. 18: 497–504.Google Scholar
  22. Nye, R. E. 1970. Influence of the cyclical pattern of ventilatory flow on pulmonary gas exchange. Respirat. Physiol. 10: 321–337.Google Scholar
  23. Paiva, M. 1973. Gas transport in the human lung. J. Appl. Physiol. 35: 401–410.PubMedGoogle Scholar
  24. Paulev, P. E. 1965. Decompression sickness following repeated breath-hold dives. J. Appl. Physiol. 20: 1028–1031.PubMedGoogle Scholar
  25. Pride, N. B., S. Permutt, R. L. Riley, and B. Bramberger-Barnea 1967. Determinants of maximum expiratory flow from the lungs. J. Appl. Physiol. 23: 646–662.PubMedGoogle Scholar
  26. Radford, E. P. 1964. Static mechanical properties of mammalian lungs. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: American Physiological Society, Sect., 3, Vol. I, p. 429–450.Google Scholar
  27. Saltzman, H. A.,J. U. Salzano,G. D. Blenkarn, and J. A. Kylstra 1971. Effects of pressure on ventilation and gas exchange in man. J. Appl. Physiol. 30: 443–449.Google Scholar
  28. Schafer, K. E., R. D. Allison, C. R. Carey, and R. Strauss 1972. The effects of simulated breath-hold dives in dry and wet chambers on blood shifts into the thorax. Rep. 729. Groton. CT: U.S. Navy Submarine Research Laboratory.Google Scholar
  29. Schafer, K. E., R. D. Allison, J. H. Dougherty, Jr., C. R. Carey, R. Walker, F. Yostrand, and D. Parker 1968. Pulmonary and circulatory adjustments determining the limits of breath-hold diving. Rep. 531. Groton, CT: U.S. Navy Submarine Research Laboratory.Google Scholar
  30. Strauss, M. C., and P. W. Wright 1971. Thoracic squeeze diving casualty. Aerosp. Med. 46: 673–675.Google Scholar
  31. Thalmann, E. D., and C. E. G. Lundgren 1978. The effect of static lung loading on Vo2max, Ve and MW at depth. Undersea Biomed. Res. Suppl. 5: 11–12.Google Scholar
  32. Weibel, E. 1964. Morphometries of the lung. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: American Physiological Society, Sect. 3, Vol. I, p. 285–305.Google Scholar
  33. Wood, L. D. H., and A. C. Bryan 1971. Mechanical limits of exercise ventilation at increased ambient pressure. In: Underwater Physiology, IV. Proceedings of the Fourth Symposium on Underwater Physiology, edited by C. J. Lambertsen. New York: Academic Press, p. 307–316.Google Scholar
  34. Worth, H., H. Takahashi, H. Willmer, and J. Piiper 1976. Pulmonary gas exchange in dogs ventilated with mixtures of oxygen with various inert gases. Respirat. Physiol. 28: 1–215.Google Scholar
  35. Yacoub, O., D. Doell, M. H. Kryger, and N. R. Anthonisen 1976. Depression of hypoxic ventilatory response by nitrous oxide. Anesthesiology 45: 385–389.PubMedGoogle Scholar

References

  1. Agostoni, E., G. Gurtner. G. Torri, and H. Rahn 1966. Respiratory mechanics during submersion and negative-pressure breathing. J. Appl. Physiol. 21: 251–258.PubMedGoogle Scholar
  2. Arborelius, M., Jr., U. I. Balldin, B. Liua, and C. E. G. Lundgren 1972a. Hemodynamic changes in man during immersion with the head above water. Aerosp. Med. 43: 592–598.PubMedGoogle Scholar
  3. Arborelius, M., Jr., U. I. Balldin, B. Liua, and C. E. G. Lundgren 1972b. Regional lung functions in man during immersion with the head above water. Aerosp. Med. 43: 701–707.PubMedGoogle Scholar
  4. Balldin, U. I. 1973. The preventive effect of denitrogenation during warm water immersion on decompression sickness in man. Försvarsmedicin 9: 239–243.Google Scholar
  5. Balldin, U. I., and C. E. G. Lundgren 1972. Effects of immersion with the head above water on tissue nitrogen elimination in man. Aerosp. Med. 43: 1101–1108.PubMedGoogle Scholar
  6. Balldin, U. I., G. O. Dahlback, and C. E. G. Lundgren 1971a. Changes in vital capacity produced by oxygen-breathing during immersion with the head above water. Aerosp. Med. 42: 384–387.PubMedGoogle Scholar
  7. Balldin, U. I., C. E. G. Lundgren, J. Lundvall, and S. Mellander 1971b. Changes in the elimination of l33Xenon from the anterior tibial muscle in man induced by immersion in water and by shifts in body position. Aerosp. Med. 42: 489–493.PubMedGoogle Scholar
  8. Begin, R., M. Epstein, M. A. Sackner, R. Levinson, R. Dougherty, and D. Duncan 1976. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man. J. Appl. Physiol. 40: 293–299.PubMedGoogle Scholar
  9. Behnke, A. R., and L. F. Austin 1974. Introduction to SCUBA diving. J. Sports Med. 11: 276–290.Google Scholar
  10. Bondi, K. R., J. M. Young, R. M. Bennett, and M. E. Bradley 1976. Closing volumes in man immersed to neck in water. J. Appl. Physiol. 40: 736–740.PubMedGoogle Scholar
  11. Brattstrom, P., B. Lindvall, C. E. G. Lundgren, and H. Örnhagen 1975. Influence of body posture and ear clearing on body buoyancy during diving. Undersea Biomed. Res. 2: 161–166.PubMedGoogle Scholar
  12. Cook, S. F. 1951. Role of exercise, temperature, drugs and water balance in decompression sickness. Part II. In: Decompression Sickness, Caisson Sickness, Diver’s and Flier’s Bends and Related Syndromes, edited by J. F. Fulton. Philadelphia: Saunders Company, p. 223–241.Google Scholar
  13. Costill, D. L. 1972. Water and electrolytes. In: Ergogenic Acids and Muscular Performance, edited by W. P. Morgan. New York: Academic Press, p. 293–318.Google Scholar
  14. Dahlbäck, G. O. 1978. Lung mechanics during immersion in water—with special reference to pulmonary air trapping (unpublished thesis). University of Lund, Sweden: Laboratory of Aviation and Naval Physiology, Institute of Physiology and Biophysics.Google Scholar
  15. Dahlbäck, G. O., and C. E. G. Lundgren 1972. Pulmonary air trapping induced by water immersion. Aerosp. Med. 43: 768–774.PubMedGoogle Scholar
  16. Dahlbäck, G. O., B. Jonson. and C. E. G. Lundgren 1979. Influence of hydrostatic thorax compression and intrathoracic blood pooling on dynamic lung mechanics during head-out immersion. Undersea Biomed. Res. Suppl. 6: 23.Google Scholar
  17. Dahlbäck, G. O., E. Jonsson. and M. H. Liner 1978. Influence of hydrostatic compression of the chest and intrathoracic blood pooling on static lung mechanics during head-out immersion. Undersea Biomed. Res. 5: 71–85.PubMedGoogle Scholar
  18. Epstein, M. 1978. Renal effects of head-out immersion in man. Implications for an understanding of volume homeostasis. Physiol. Rev. 58: 529–581.PubMedGoogle Scholar
  19. Epstein, M., N. S. Bricker. and J. J. Bourgoignie 1978. Presence of a natriuretic factor in urine of normal men undergoing water immersion. Kidney Int. 13: 153–158.Google Scholar
  20. Farhi, L. E., and D. Linnarsson 1977. Cardiopulmonary readjustments during graded immersion at 35°C. Respir. Physiol. 30: 35–50.PubMedGoogle Scholar
  21. Flynn, E. T., Jr., E. M. Camporesi. and S. A. Nunneley 1975. Cardiopulmonary responses to pressure breathing during immersion in water. In: Man, Water, Pressure, edited by E. H. Lanphier and H. Rahn. Buffalo: State Univ. of New York at Buffalo, Dept. of Physiology, p. 79–94.Google Scholar
  22. Hong, S. K., P. Cerretelli, J. Cruz, and H. Rahn 1969. Mechanics of respiration during submersion in water. J. Appl. Physiol. 27: 535–538.PubMedGoogle Scholar
  23. Jarrett, A. S. 1965. Effect of immersion on intrapulmonary pressure. J. Appl. Physiol. 20: 1261–1266.Google Scholar
  24. Johnson, L. F., Y. C. Lin. and S. K. Hong 1975. Gastroesophageal dynamics during immersion in water to the neck. J. Appl. Physiol. 38: 449–454.Google Scholar
  25. Kurss, D. I., C. E. G. Lundgren. and A. J. pasche 1980. The effect of water temperature on vital capacity during head-out immersion. In: Underwater Physiology VII. Proceedings of the Seventh Symposium on Underwater Physiology, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD.: Undersea Medical Society.Google Scholar
  26. Lundgren, C. E. G. 1975. Immersion effects on pulmonary, circulatory and gastrointestinal systems. In: International Symposium on Man in the Sea, edited by S. K. Hong. Bethesda, Md.: Undersea Medical Society.Google Scholar
  27. Lundgren, C. E. G., and H. Örnhagen 1975. Nausea and abdominal discomfort—possible relation to aerophagia during diving: an epidemiologic study. Undersea Biomed. Res. 2: 155–160.PubMedGoogle Scholar
  28. Paton, W. D. M., and A. Sand 1947. The optimum intrapulmonary pressure in underwater respiration. J. Physiol. 106: 119–138.Google Scholar
  29. Pendergast, D. R., P. E. DiPrampero, A. B. Craig, Jr., D. R. Wilson, and D. W. Rennie 1977. Quantitative analysis of the front crawl in men and women. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 43: 475–479.Google Scholar
  30. Prefaut, Ch., F. Dubois, Ch. Roussos, R. Amarl-Marques, P. T. Macklem. and F. Ruff 1979. Influence of immersion to the neck in water on airway closure and distribution of perfusion in man. Respir. Physiol. 37: 313–323.PubMedGoogle Scholar
  31. Prefaut, Ch., M. Ramonatxo, R. Boyer. and G. Chardon 1978. Human gas enchange during water immersion. Respir. Physiol. 34: 307–317.Google Scholar
  32. Rennie, D. W., P. DiPrampero. and P. Cerretelli 1971. Effects of water immersion on cardiac output, heart rate, and stroke volume of man at rest and during exercise. Med. Sport 24: 223–228.Google Scholar
  33. Ringqvist, T. 1966. The ventilatory capacity in healthy subjects. Scand. J. Clin. Lab. Invest. Suppl. 88: 18.Google Scholar
  34. Risch, W. D., H.-I. Koubenec, U. Beckmann, S. Lange. and O. H. Gauer 1978. The effect of graded immersion on heart volume, central venous pressure, pulmonary blood distribution and heart rate in man. Pfluegers Arch. 374: 115–118.Google Scholar
  35. Stegman, J., H. D. Framing, and M. Schiefeling 1969. Der Einfluss einer 6-stündigen Immersion in ther modifferentem Wasser auf die Regulation des Kreislaufes und des Leistungsfähigkeit bei Trainierten und Untrainierten. Pfluegers Arch. 312: 129–138.Google Scholar
  36. Stegman, J., U. Meier, W. Skipka, W. Hartlieb, B. Hemmer. and U. Tibes 1975. Effects of a multi-hour immersion with intermittent exercise on urinary excretion and tilt table tolerance in athletes and non- athletes. Aviat. Space Environ. Med. 46 (l): 26–29.Google Scholar
  37. Stigler, R. 1911. Die Kraft unserer Inspirations Muskulatur. Pfluegers Arch. 139: 234–254.Google Scholar
  38. Thalmann, E. D., D. K. Sponholtz. and C. E. G. Lundgren 1979. Effects of immersion and static lung loading on submerged exercise at depth. Undersea Biomed. Res. 6: 259–290.Google Scholar
  39. Wolkiewiez, J., A. Valici, P. Maestracci. and M. Marcillon 1979. L’association rupture gastrique et MD.D. problemes diagnostic et therapeutic. Med. Aeronaut. Spat. Med. Subaquat. Hvperbare 18 (21): 251–253.Google Scholar

References

  1. Bradley, M. E., and J. G. Dickson, Jr. 1976. The effects of nitrous oxide narcosis on the physiological and psychologic performance of man at rest and during exercise. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol., p. 617–626.Google Scholar
  2. Daly, W. J., and S. Bondurant 1961. Effects of oxygen breathing on the heart rate, blood pressure, and cardiac index of normal men—resting, with reactive hyperemia, and after atropine. J. Clin. Invest. 41: 126–132.Google Scholar
  3. Dautrebande, L., and J. S. Haldane 1921. The effects of respiration of oxygen breathing and circulation. J. Physiol. 55: 296–299.PubMedGoogle Scholar
  4. Doubt, T. J., and P. M. Hogan 1978. Effects of hydrostatic pressure on conduction and excitability in rabbit atria. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 45: 24–32.Google Scholar
  5. Evans, D. E., E. Hardenbergh, L. W. Raymond, and M. E. Bradley 1977. Effect of helium breathing on cardiac arrhythmias induced by coronary occlusion and digitalis in the cat. Undersea Biomed. Res. 4: 381–389.PubMedGoogle Scholar
  6. Fagraeus, L. 1971. Performance of the isolated guinea-pig heart in the hyperbaric environment. Stockholm, Sweden: Karolinska Institutet, Laboratories of Aviation and Naval Medicine.Google Scholar
  7. Fagraeus, L. 1974. Cardiorespiratory and metabolic functions during exercise in the hyperbaric environment. Acta Physiol. Scand. Suppl. 414: 1–40.PubMedGoogle Scholar
  8. Fagraeus, L., C. M. Hesser. and D. Linnarsson 1974. Cardiorespiratory responses to graded exercise at increased ambient air pressure. Acta Physiol. Scand. 91: 259–274.Google Scholar
  9. Fagraeus, L., and D. Linnarsson 1973. Heart rate in the hyperbaric environment after autonomic blockade. Försvarsmedicin 9: 260–264.Google Scholar
  10. Flynn, E. T., T. E. Berghage. and E. F. Coil 1972. Influence of Increased Ambient Pressure and Gas Density on Cardiac Rate in Man. Rep. 4 - 72. Panama City, FL: U.S. Navy Experimental Diving Unit.Google Scholar
  11. Gledhill, N., A. K. Chin, and A. C. Bryan 1975. Plasma catecholamines in humans during helium breathing. Physiologist 18: 22.Google Scholar
  12. Hardenbergh, E., J. A. Miles, and L. W. Raymond 1978. Lack of effect of helium breathing on catecholamine levels in the adrenal vein blood of the rabbit. Aviat. Space Environ. Med. 49: 573–575.PubMedGoogle Scholar
  13. Heller, R., W. Mager. and H. V. Schrötter 1897. On the physiological behavior of pulse with change of air pressure. Z. Klin. Med. 33(3): 1–60. (NAVSHIPS Trans. No. 1349.)Google Scholar
  14. Hempleman, H. V., B. Andrews, D. W. Burgess, R. F. Carlyle. and S. A. Collis 1978. Observations on men at pressures of up to 300 msw (31 bar). Rep. 78401. Gosport, Hants, U.K.: Admiralty Marine Technology Establishment.Google Scholar
  15. Hesser, C. M., L. Fagraeus. and D. Linnarsson 1968. Cardiorespiratory responses to exercise in the hyperbaric environment. Stockholm, Sweden: Karolinska Instituted Laboratories of Aviation and Naval Medicine.Google Scholar
  16. Holland, J. A., W. G. Wolfe, and J. A. Kylstra 1973. Helium: Absence of antiarrhythmic effect in anesthetized dogs. J. Thorac. Cardiovasc. Surg. 66: 478–480.PubMedGoogle Scholar
  17. Lin, Y. C., and E.N. Kato 1974. Effects of helium gas on heart rate and oxygen consumption in unanesthetized rats. Undersea Biomed. Res. 1: 281–289.PubMedGoogle Scholar
  18. Lundgren, C. E. G., and H. C. Ornhagen 1976. Heart rate and respiratory frequency in hydrostatically compressed, liquid-breathing mice. Undersea Biomed. Res. 3: 303–320.PubMedGoogle Scholar
  19. Matsuda, M., H. Nakayama, H. Arita, J. F. Morlock, J. Claybaugh, R. M. Smith, and S. K. Hong 1978. Physiological responses to head-out immersion in water at 11 ATA. Undersea Biomed. Res. 5: 37–52.PubMedGoogle Scholar
  20. Matsuda, M., H. Nakayama, A. Itoh, N. Kirigaya, F. K. Kurata, R. H. Strauss, and S. K. Hong 1975. Physiology of man during a 10-day dry heliox saturation dive (SEATOPIA) to 7 ATA. I. Cardiovascular and thermoregulatory functions. Undersea Biomed. Res. 2: 101–117.PubMedGoogle Scholar
  21. Morrison, J. B., P. B. Bennett, E. E. P. Barnard, and W. J. Eaton 1976. Physiological studies during a deep, simulated oxygen-helium dive to 1500 feet. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol., p. 3–20.Google Scholar
  22. Nicholas, T. E., J. L. Hart, and P. A. Kim 1974. Effect of breathing helium on sympathetic nervous and cardiovascular functions. Undersea Biomed. Res. 1: 271–280.PubMedGoogle Scholar
  23. Nicholas, T. E., J. L. Hart, and, P. A. Kim 1975. Inability of helium to influence the occurrence of arrhythmias in cats, rats and mice. Undersea Biomed. Res. 2: 28–34.PubMedGoogle Scholar
  24. Önhagen, H. Ch., and P. M. Hogan 1977. Hydrostatic pressure and mammalian cardiac-pacemaker function. Undersea Biomed. Res. 4: 347–358.Google Scholar
  25. Pifarre, R., W. D. Cox, M. Jasuja. and W. E. Neville 1969. Helium in the prevention of ventricular fibrillation. Dis. Chest 56: 135–138.Google Scholar
  26. Pifarre, R., T. K. Raghunath, R. M. Vanecko, F. S. Chua, J. U. Balis, and W. E. Neville 1970. Effect of oxygen and helium mixtures on ventricular fibrillation. J. Thorac. Cardiovasc. Surg. 60: 648–652.PubMedGoogle Scholar
  27. Pifarre, R., S. M. Wilson, and C. A. Hufnagel 1968. The influence of oxygen and helium upon ventricular fibrillation: a preliminary report. J. Thorac. Cardiovasc. Surg. 55: 535–537.PubMedGoogle Scholar
  28. Raymond, L., R. B. Weiskopf. and M. J. Halsey 1972. Possible mechanism for the antiarrhythmic effect of helium in anesthetized dogs. Science 176: 1250–1252.Google Scholar
  29. Shilling, C. W., J. A. Hawkins, and R. A. Hansen 1936. The influence of increased barometric pressure on the pulse rate and arterial blood pressure. US Nav. Med. Bull. 34: 39–47.Google Scholar
  30. Smith, R. M., S. K. Hong, R. H. Dressendorfer. H. J. Dwyer, E. Hayashi. and C. Yelverton 1977. Hana Kai II: A 17-day dry saturation dive at 18.6 ATA. IV. Cardiopulmonary functions. Undersea Biomed. Res. 4: 267–281.PubMedGoogle Scholar
  31. Wade, C. E., E. W. Banister, D. G. Baker, and Y. C. Lin 1979. Absence of antiarrhythmic effects of helium in patients with spontaneous premature ventricular beats at rest. Undersea Biomed. Res. 6: 313–318.PubMedGoogle Scholar
  32. Whalen, R. E., H. A. Saltzman, D. H. Holloway, Jr., H. D. MgIntosh, H. 0. Sieker. and I. W. Brown, Jr. 1965. Cardiovascular and blood gas responses to hyperbaric oxygenation. Am. J. Cardiol. 15: 638–646.PubMedGoogle Scholar
  33. Wilson, J. M.. P. D. Kligfield, G. M. Adams, C. Harvey, and K. E. Schaefer 1977. Human ECG changes during prolonged hyperbaric exposures breathing N2-02 mixtures. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 42: 614–623.Google Scholar

References

  1. Bachrach, a. J., and P. B. Bennett 1973. Tremor in diving. Aerosp. Med. 44: 613–623.PubMedGoogle Scholar
  2. Bennett, P. B. 1965. Psychometric impairment in men breathing oxygen-helium at increased pressures. Underwater Physiology Rep. 251. U.K. Medical Research Council, Royal Naval Personnel Research Committee.Google Scholar
  3. Bennett, P. B. 1967. Performance impairment in deep diving due to nitrogen, helium, neon and oxygen. In: Underwater Physiology III. Proceedings of the Third Symposium on Underwater Physiology, edited by C. J. Lambertsen. Baltimore: Williams & Wilkins.Google Scholar
  4. Bennett, P. B. 1975. The high pressure nervous syndrome: man. In: The Physiology and Medicine of Diving and Compressed Air Work, edited by P. B. Bennett and D. H. Elliott. London: Baillière, Tyndall.Google Scholar
  5. Bennett, P. B. 1982. The high pressure nervous syndrome. In: The Physiology and Medicine of Diving and Compressed Air Work (3rd ed.) edited by P. B. Bennett and D. H. Elliott. London: Bailliere Tyndall, p. 262–296.Google Scholar
  6. Bennett, P. B., and A. N. Dossett 1967. Undesirable effects of oxygen-helium breathing at great depths. Underwater Physiology Sub-committee Rep. 260, U.K. Medical Research Council, Royal Naval Personnel Research Committee.Google Scholar
  7. Bennett, P. B., and S. P. Gray 1971. Changes in human urine and blood chemistry during a simulated oxygen-helium dive to 1500 ft. Aerosp. Med. 42: 868–874.PubMedGoogle Scholar
  8. Bennett, P. B., and E. J. Towse 1971a. Performance efficiency of men breathing oxygen-helium at great depths between 100 ft and 1500 ft. Aerosp. Med. 42: 1147–1156.PubMedGoogle Scholar
  9. Bennett, P. B., and E. J. Towse 1971b. The high pressure nervous syndrome during a simulated oxygen- helium dive to 1500 ft. EEG Clin. Neurophysiol. 31: 383–393.Google Scholar
  10. Bennett, P. B., A. Bachrach, R. Brauer, J. Rostain. and L. Raymond 1976. The high pressure nervous syndrome. In: National Plan for the Safety and Health of Divers in Their Quest for Subsea Energy, edited by M. W. Beckett. Bethesda, MD: Undersea Medical Society.Google Scholar
  11. Bennett, P. B., G. D. Blenkarn, J. Roby. and D. Youngblood 1974. Suppression of the high pressure nervous syndrome in human deep dives by He-N2-02. Undersea Biomed. Res. 1: 221–237.PubMedGoogle Scholar
  12. Bennett, P. B., R. Coggin. and M. McLeod 1982. Effect of compression rate on use of trimix to ameliorate HPNS in man to 686 m (2251 ft). Undersea Biomed. Res. 9: 335–351.Google Scholar
  13. Bennett, P. B., R. Coggin. and J. Roby 1981. Control of HPNS in humans during rapid compression with trimix to 650 m (2132 ft). Undersea Biomed. Res. 8: 85–100.PubMedGoogle Scholar
  14. Bennett, P. B., J. Roby, S. Simon, and D. Youngblood 1975. Optimal use of nitrogen to suppress the high pressure nervous syndrome. Aviat. Space Environ. Med. 46: 37–40.PubMedGoogle Scholar
  15. Brauer, R. W., M. R. Jordan, and R. O. Way 1968. Modification of the convulsive seizure phase of the high pressure excitability syndrome in mice. Fed. Proc. 27: 284.Google Scholar
  16. Brauer, R. W., S. M. Goldman, R. W. Beaver, and M. E. Sheehan 1974. N2, H2 and N20 antagonism of high pressure neurological syndrome in mice. Undersea Biomed. Res. 1: 59–72.Google Scholar
  17. Buehlmann, A. A., H. Matthys, G. Overrath, P. B. Bennett, D. H. Elliott, and S. P. Gray 1970. Saturation exposures of 31 ATA in an oxygen-helium atmosphere with excursions to 36 ATA. Aerosp. Med. 41: 394–402.Google Scholar
  18. Fructus, X. R. 1972. Down below the great depths. In: Proceedings of the Third International Conference on Hyperbaric and Underwater Physiology. Paris: Doin.Google Scholar
  19. Hamilton, R. W., J. B. MacInnis, A. D. Noble, and H. R. Schreiner 1967. Saturation diving at 650 feet. Tech. Memo. B1411. Tonawanda, NY: Ocean Systems, Inc.Google Scholar
  20. Hunter, W. L., and P. B. Bennett 1974. The causes, mechanisms and prevention of the high pressure nervous syndrome. Undersea Biomed Res. 1: 1–28.Google Scholar
  21. Johnson, F. H., and E. A. Flagler 1950. Hydrostatic pressure reversal of narcosis in tadpoles. Science 112: 91–92.PubMedGoogle Scholar
  22. Lever, M. J., K. W. Miller, W. D. M. Paton and E. B. Smith 1971. Pressure reversal in anesthesia. Nature 231: 371–386.Google Scholar
  23. Naquet, R., J. C. Rostain. and X. Fructus 1975. High pressure nervous syndrome: Clinical and electrophysiological studies in man. In: Strategy for Future Diving to Depths Greater Than 1000 ft. Bethesda, MD: Undersea Medical Society. (Workshop Rep. WS G-15–75.)Google Scholar
  24. Peterson, R. E., P. B. Bennett, R. Vaernes, A. P. Dick, and S. Tonjum 1982. Testing of compression strategies for diving to 500 msw. Undersea Biomed. Res. Suppl. 9: 21.Google Scholar
  25. Proctor, L. D., C. R. Carey, R. M. Lee, K. E. Schaefer. and H. van den Ende 1972. Electroencephalographic changes during saturation excursion dives to a simulated sea water depth of 1000 ft. Aerosp. Med. 43: 867–877.Google Scholar
  26. Rostain, J. C., and R. Naquet 1974. Le syndrome nerveux des hautes pressions: caracteristiques et evolution en fonction de divers modes de compression. Rev. Electroencephalogr. Neurophysiol. 4: 107 - 124.Google Scholar
  27. Rostain, J. C., C. Lemaire. and R. Naquet 1982. HPNS in man during a 12 day stay at 450 m in He-N2- 02 breathing mixture. Undersea Biomed. Res. Suppl. 9: 22.Google Scholar
  28. Schaefer, K. E., C. R. Carey, and J. Dougherty 1970. Pulmonary gas exchange and urinary electrolyte excretion during saturation-excursion diving to pressures equivalent to 800 and 1000 ft of seawater. Aerosp. Med. 41: 856–864.Google Scholar
  29. Spaur, W. H. 1974. 1600-ft Dive. In: The Working Diver 1974. Washington, DC: Marine Technology Society.Google Scholar
  30. Summitt, J. K., J. S. Kelley, J. M. Herron. and H. A. Saltzman 1969. Joint U.S. Navy-Duke University 1000 ft saturation dive. Rep. 3–69. Washington, DC: U.S. Navy Experimental Diving Unit.Google Scholar
  31. Vaernes, R., P. B. Bennett, D. Hammerborg, B. Ellertsen, R. E. Peterson, and S. Tonjum 1982. Central nervous system reactions during heliox and trimix dives to 31 ATA. Undersea Biomed. Res. 9: 1–14.PubMedGoogle Scholar
  32. Zaltsman, G. L. 1961. Physiological principles of a sojourn of a human in conditions of raised pressures of the gaseous medium. (Eng. transl. Wright-Patterson AFB, OH, 1967.)Google Scholar
  33. Zaltsman, G. L. 1968. Hyperbaric Epilepsy and Narcosis (Neurophysiological Studies). Leningrad: Sechenov Institute of Evolutionary Physiology and Biochemistry, USSR Acad. Sci.Google Scholar

References

  1. Ackles, K. N., and B. Fowler 1971. Cortical evoked response and inert gas narcosis in man. Aerosp. Med. 43: 1181–1184.Google Scholar
  2. Adolphson, J. 1967. Human performance and behaviour in hyperbaric environments. In: Acta Psychologica Gothoburgensia, edited by J. Elmgren. Stockholm: Almqvist and Wiksell.Google Scholar
  3. Adolphson, J., L. Goldberg, and T. Berghage 1972. Effects of increased ambient air pressures on standing steadiness in man. Aerosp. Med. 43: 520–524.Google Scholar
  4. Behnke, A. R. 1945. Psychological and psychiatric reactions in diving and in submarine warfare. Am. J. Psychiatry 101: 720–725.Google Scholar
  5. Behnke, A. R., R. M. Thomson, and E. P. Motley 1935. The psychologic effects of breathing air at 4 atmospheres pressure. Am. J. Physiol. 112: 554–558.Google Scholar
  6. Behnke, A. R., and O. D. Yarbrough 1939. Respiratory resistance, oil-water solubility and mental effects of argon compared with helium and nitrogen. Am. J. Physiol. 126: 409–415.Google Scholar
  7. Bennett, P. B. 1975. Inert gas narcosis. In: The Physiology and Medicine of Diving and Compressed Air Work, edited by P. B. Bennett and D. H. Elliott. London: Baillière, Tindall.Google Scholar
  8. Case, E. M., and J. B. S. Haldane 1941. Human physiology under high pressure. J. Hyg. (Cambridge) 41: 225–249.Google Scholar
  9. Clements, J. A., and K. M. Wilson 1962. The affinity of narcotic agents for interfacial films. Proc. Natl. Acad. Sci. 48: 1008–1014.PubMedGoogle Scholar
  10. Cullen, S. C., and E. G. Gross 1951. The anesthetic properties of xenon in animals and human being with additional observations on krypton. Science 113: 580–582.PubMedGoogle Scholar
  11. Damant, G. C. C. 1930. Physiological effects of work in compressed air. Nature (Lond.) 126: 606–608.Google Scholar
  12. Edel, P. O. 1976. Use of other gases: hydrogen and neon. In: Decompression Procedures for Depths in Excess of 400 Feet, edited by R. W. Hamilton, Jr. Bethesda, MD: Undersea Medical Society.Google Scholar
  13. Featherstone, R. M., and C. A. Muehlbaecher 1963. The current role of inert gases in the search for anesthesia mechanisms. Pharmacol. Rev. 15: 97–121.Google Scholar
  14. Hamilton, R. W., Jr., and D. J. Kenyon 1976. Decompression work at Tarrytown. In: Decompression Procedures for Depths in Excess of 400 Feet, edited by R. W. Hamilton, Jr. Bethesda, MD: Undersea Medical Society.Google Scholar
  15. Jones, A. W., R. D. Jennings, J. Adolphson. and C. M. Hesser 1979. Combined effects of ethanol and hyperbaric air on body sway and heart rate in man. Undersea Biomed. Res. 6: 15–25.PubMedGoogle Scholar
  16. Kiessling, R. J., and C. H. Maag 1962. Performance impairment as a function of nitrogen narcosis. J. Appl. Psychol. 46: 91–95.Google Scholar
  17. Lever, M. J., K. W. Miller, W. D. M. Paton. and E. B. Smith 1971. Pressure reversal of anaesthesia. Nature (Lond.) 231: 368–371.Google Scholar
  18. Meyer, K. H., and H. Hopff 1923. Narcosis by inert gases under pressure. Hoppe-Seyler’s Z. Physiol. Chem. 126: 288–298.Google Scholar
  19. Miller, K. W. 1977. The opposing physiological effects of high pressures and inert gases. Fed. Proc. 36: 1663–1667.PubMedGoogle Scholar
  20. Rahn, H. 1975. Performance during mouse saturation dives to 100 ATA. In: The Strategy for Future Diving to Depths Greater than 1000ft., M. J. Halsey, W. Settle, and E. B. Smith, rapporteurs. Bethesda, MD: Undersea Medical Society.Google Scholar
  21. Rahn, H., and M. A. Rokitka 1976. Narcotic potency of N2, A, and N20 evaluated by physical performance of mouse colonies. Undersea Biomed. Res. 3: 25–34.PubMedGoogle Scholar
  22. Shilling, C. W., M. F. Werts. and N. R. Schandelmeier (editors) 1976. The Underwater Handbook: A Guide to Physiology and Performance for the Engineer. New York: Plenum Press, p. 193–205.Google Scholar
  23. Shilling, C. W., and W. W. Willgrube 1937. Quantitative study of mental and neuro-muscular reactions as influenced by increased air pressure. Nav. Med. Bull. 35: 373–380.Google Scholar
  24. Smith, E. B. 1969. The role of exotic gases in the study of narcosis. In: The Physiology and Medicine of Diving and Compressed Air Work, edited by P. B. Bennett and D. H. Elliott. London: Baillière, Tindall.Google Scholar
  25. Stern, S. A., and H. L. Frisch 1973. Dependence of inert gas narcosis on lipid “free volume.” J. Appl. Physiol. 34: 366–373.PubMedGoogle Scholar

References

  1. Allsen, P. E., P. Parsona. and G. R. Bryce 1977. Effects of menstrual cycle on maximum oxygen uptake. Phys. Sports Med. July, p. 53–55.Google Scholar
  2. Astrand, P. O., and K. Rodahl 1970. Textbook of Work Physiology. New York: McGraw-Hill.Google Scholar
  3. Bachrach, A. J., and M. Holiman 1973. Diver offspring: miss or myth? Sea Diver December, p. 27.Google Scholar
  4. Bangasser, S. 1979. Incidence of decompression sickness in women scuba divers. In: Proceedings of the Annual Scientific Meeting of the Undersea Medical Society. Bethesda, MD: Undersea Medical Society.Google Scholar
  5. Bassett, B. E. 1973. Decompression sickness in female students exposed to altitude during physiological training. Paper presented at the 44th Annual Scientific Meeting of the Aerospace Medical Association, Las Vegas, NV.Google Scholar
  6. Beckman, E. L., and E. M. Smith 1972. TEKTITE II. medical supervision of the scientist in the sea. Tex. Rep. Biol. Med., Vol. 30.Google Scholar
  7. Behnke, A. R. 1968. Physique and exercise, In: Exercise Physiology, edited by H. B. Falls. New York: Academic Press.Google Scholar
  8. Bolton, M. 1980. Scuba diving and fetal well-being: a survey of 208 women. Undersea Biomed. Res. 7: 183–189.PubMedGoogle Scholar
  9. Boycott, A. E., J. B. S. Haldane. and G. C. C. Damant 1908. The prevention of compressed air illness. J. Hyg. (Camb.) 8: 419–420.Google Scholar
  10. Brown, S. 1979. Comparison of fetal and maternal susceptibility to decompression sickness (Thesis). College Station: Texas A&M Univ.Google Scholar
  11. Butler, B. D., and B. A. Hills 1979. The lung as a filter for microbubbles. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 47: 537–543.Google Scholar
  12. Chen, V. 1974. The prophylactic therapeutic treatment of decompression sickness by heparin and aspirin (Thesis). College Station: Texas A&M Univ.Google Scholar
  13. Edmonds, C. 1977. Female divers: facts and fallacies. Scot. Diver, May/June, p. 2–5.Google Scholar
  14. Fife, W. P. (chairman) 1980. Effects of Diving on Pregnancy. Bethesda, MD: Undersea Medical Society. (19th Workshop Nov. 1978.)Google Scholar
  15. Fife, W. P., C. Simmang. and J. V. Kitzman 1978. Susceptibility of fetal sheep to acute decompression sickness. Undersea Biomed. Res. 5: 287–292.Google Scholar
  16. Harris, D. V. 1973. Women in sports: some misconceptions. J. Sports Med. March/April, p. 15–17.Google Scholar
  17. McIver, R. G. 1968. Bends resistance in the fetus. Paper presented at the 1968 Annual Scientific Meeting of the Aerospace Medical Association, Bal Harbor, FL.Google Scholar
  18. Meijne, N. G. 1970. Hyperbaric Oxygen and Its Clinical Value. American Lectures in Living Chemistry. Springfield, IL: Charles C Thomas.Google Scholar
  19. Nakamura, Y. 1962. The Women Sea Divers of Japan. Tokyo: Chunichi Shinbun.Google Scholar
  20. Nukada, M. 1965. Historical development of the Ama’s diving activities. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 25–40.Google Scholar
  21. Parry, Z. 1978. The female ethic in diving history—poetry or prejudice. In: Proceedings of the PADI Women in Diving Seminar, edited by D. Graver. Santa Ana, CA: Professional Association of Diving Instructors.Google Scholar
  22. Rahn, H., and T. Yokoyama (editors) 1965. The Physiology of Breath-hold Diving and the Ama of Japan. Washington, DC: Natl. Acad. Sci./Natl. Res. Council.Google Scholar
  23. Rennie, D. W., B. G. Covino, B. J. Howell, S. H. Hong, B. S. Kang. and S. K. Hong 1962. Physical insulation of Korean diving women. J. Appl. Physiol. 17: 961–966.Google Scholar
  24. Smith, K. C. 1979. The Woman Diver. Sea Grant College Program. Rep. SG-79–803. College Station: Texas A&M Univ.Google Scholar
  25. Stock, M. K., E. H. Lanphier, D. F. Anderson, L. C. Anderson, T. M. Phernettson. and J. H. G. Rankin 1980. Responses of fetal sheep to simulated no-decompression dives. J. Appl. Physiol.: Respir. Environ Exercise Physiol. 48: 776–780.Google Scholar
  26. Willson, J. R. 1978. Diving-in-pregnancy research possibilities. In: Effects of Diving on Pregnancy. Bethesda, MD: Undersea Medical Society, p. A6-A13. (19th Workshop Nov. 1978.)Google Scholar

References

  1. Arborelius, M., Jr, U. I. Balldin, B. Liua. and C. E. G. Lundgren 1972. Regional lung function in man during immersion with the head above water. Aerosp. Med. 43 (7): 701–707.Google Scholar
  2. Astrand, P.-O., and K. Rodahl 1977. Textbook of Physiology ( 2nd ed. ). New York: McGraw-Hill.Google Scholar
  3. Bayne, C. G. 1978. Acute decompression sickness: 50 cases. J. Am. Coll. Emerg. Phys. 7: 351–354.Google Scholar
  4. Behnke, A. R. 1942. Effects of high pressures; prevention and treatment of compressed air illness. Med. Clin. N. Am. July: 1213–1236.Google Scholar
  5. Buckles, R. G., and C. Knox 1969. In vivo bubble detection by acoustical-optical imaging techniques. Nature 222: 771–772.PubMedGoogle Scholar
  6. Dahlbäck, G. O., and C. E. G. Lundgren 1972. Pulmonary air trapping induced by water immersion. Aerosp. Med. 43: 768–774.PubMedGoogle Scholar
  7. Flynn, E. T., T. E. Berghage. and E. F. Coil 1972. Influence of increased ambient pressure and gas density on cardiac rate in man. Rep. 4–72, Panama City, FL: U.S. Navy Experimental Diving Unit.Google Scholar
  8. Franklin, D. L., W. Schlegel. and R. F. Rushmer 1961. Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134: 265–284.Google Scholar
  9. Gollen, F. P., N. Kizakevich. and J. McDermott 1978. Continuous electrode monitoring of systolic time intervals during exercise. Br. Heart J. 40: 1390–1396.Google Scholar
  10. Hesser, C. M., L. Fagraeus. and D. Linnarsson 1968. Cardiorespiratory Responses to Exercise in Hyperbaric Environment. Stockholm: Karolinska Institute.Google Scholar
  11. Johanson, D. C., and W. F. Postle 1976. Progression of VGE formation in open water diving. In: Proceedings of the Third Annual Meeting of the North Pacific Chapter of the Undersea Medical Society. Grand Forks: Univ. of North Dakota.Google Scholar
  12. Kindwall, E. P. 1975. Measurement of helium elimination from man during decompression breathing air or oxygen. Undersea Biomed. Res. 2: 277–284.PubMedGoogle Scholar
  13. Kindwall, E. P., A. Baz, E. N. Lightfoot, E. H. Lanphier. and A. Seireg 1975. Nitrogen elimination in man during decompression. Undersea Biomed. Res. 2: 285–297.PubMedGoogle Scholar
  14. Litmann, M., P. Ceretelli, A. Chinet, J. P. Furber, L. E. Farhi. and D. W. Rennie 1969. Redistribution of pulmonary blood flow during submersion. Physiologist 12: 285.Google Scholar
  15. Masurel, G., R. Guillerm. and P. Cavenel 1976. Detection ultra-sonore par effect Doppler de bulles circulantes chez I’homme lars de 98 plongees a I’air. Med. Aeronaut. Spat. Med. Subaquat. Hyp. 15: 199–201.Google Scholar
  16. Naval Medical Research Institute 1977. Program for hyperbaric research and development. LAPROM Document No. 2. Bethesda, MD: Naval Medical Research Institute.Google Scholar
  17. Neuman, T., R. Goad, and P. G. Linaweaver 1976. Changes in hematoligical and hemorrheological parameters following dives to 210 fsw and 132 fsw and their correlation with bubble score (Abstract). Undersea Biomed. Res. 3: A37–A38.Google Scholar
  18. Pailer, P., and H. G. Hansen 1972. Cardiac response to apnea and water immersion during exercise in man. J. Appl. Physiol. 32: 193–198.Google Scholar
  19. Pilmanis, A. A. 1975. Intravenous gas emboli in man after compressed air diving. Tech. Rep., O.N.R. Contract N00014-67-A-0269–0026. Washington, DC: Office of Naval Research.Google Scholar
  20. Pilmanis, A. A., S. K. Christoperson. and H. J. Dwyer 1976. The effect of “at depth” exercise on the formation of venous gas emboli in man during and after compressed air ocean diving. In: Proceedings of the Third Annual Meeting of the North Pacific Chapter of the Undersea Medical Society. Grand Forks: Univ. of North Dakota.Google Scholar
  21. Powell, M. R., and M. P. Spencer 1977. Physiological significance of Doppler-detected bubbles in decompression sickness (Abstract). Undersea Biomed. Res. 4: A25.Google Scholar
  22. Robertson, C. H., Jr., M. E. Bradley, L. M. Fraser. andL. D. Homer 1978. Computerized measurement of ventilation with four chest wall magnetometers. Rep. No. NMRI 78–48. Bethesda, MD: Naval Medical Research Institute.Google Scholar
  23. Spaur, W. H., L. W. Raymond, M. M. Knott, J. C. Crothers, W. R. Braithwaite, E. D. Thalmann, and D. F. Uddin 1977. Dyspnea in divers at 49.5 ATA: mechanical, not chemical in origin. Undersea Biomed. Res. 4: 183–198.PubMedGoogle Scholar
  24. Spencer, M. P., and S. D. Campbell 1968. Decompression of bubbles in venous and arterial blood during hyperbaric decompression. Bull. Mason Clin. 22: 1.Google Scholar
  25. Spencer, M. P., and S. D. Campbell 1972. Decompression venous gas emboli (Abstract). Program of the Fifth Symposium on Underwater Physiology, Freeport, Bahamas.Google Scholar
  26. Spencer, M. P., and D. C. Johanson 1974. Investigation of new principles for human decompression schedules using the Doppler blood bubble detector. Tech. Rep., O.N.R. Contract N00014-73-C-0094. Washington, DC: Office of Naval Research.Google Scholar
  27. Thalmann, E. D. 1979. Monitoring the diver’s ventilatory situation. In: Monitoring Vital Signs in the Diver, edited by C. E. G. Lundgren. Bethesda, MD: Undersea Medical Society.Google Scholar
  28. U.S. Navy 1973. U.S. Navy Diving Manual. Washington, DC: U.S. Navy Dept.Google Scholar

References

  1. Bayne, D. G., and E. T. Flynn 1982. Immersion hypothermia and thermal protective garments for divers. In: Diving Medical Officer’ Student Guide ( 2nd ed. ), edited by E. T. Flynn, C. G. Bayne, and P. W. Catron. Washington, DC: U.S. Navy School of Diving and Salvage, U.S. Navy Technical Training Command.Google Scholar
  2. Bennett, P. B. 1976. The physiology of nitrogen narcosis and the high pressure nervous syndrome. In: Diving Medicine, edited by R. H. Strauss. New York: Grune and Stratton.Google Scholar
  3. Boutelier, C., J. Colin, and J. Timbal 1971. Détermination du coefficient d’échange thermique dans l’eau en écoulement turbulent. J. Physiol. (Paris) 63: 207–209.Google Scholar
  4. Braithwaite, W. R. 1972. The calculation of minimum safe inspired gas temperature limits for deep diving. Rept. NEDU 12–72. Panama City, FL: U.S. Navy Experimental Diving Unit.Google Scholar
  5. Cooper, K. E. 1976. Hypothermia. In: Diving Medicine, edited by R. H. Strauss. New York: Grune and Stratton.Google Scholar
  6. Craig, A. B., Jr. 1971. Heat exchange between man and the water environment. In: Underwater Physiology IV. Proceedings of the Fourth Symposium on Underwater Physiology, edited by C. J. Lambertsen. New York: Academic Press.Google Scholar
  7. Craig, A. B., Jr.. and M. Dvorak 1966. Thermal regulation during water immersion. J. Appl. Physiol. 21: 1577–1585.PubMedGoogle Scholar
  8. Craig, A. B., Jr.. and M. Dvorak 1976. Heat exchanges between man and the water environment. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol.Google Scholar
  9. Hanna, J. M., R. H. Strauss, B. Itagaki, W. J. Kwon, R. Stanyon, J. Binder, and S. K. Hong 1976. Marijuana smoking and cold tolerance in man. Aviat. Space Environ. Med. 47: 634–639.PubMedGoogle Scholar
  10. Hayward, J. S., J. D. Eckerson. and M. L. Collins 1975. Thermal balance and survival time prediction of man in cold water. Can. J. Physiol. Pharmacol. 53: 21–32.PubMedGoogle Scholar
  11. Hoke, B., D. L. Jackson, J. M. Alexander, and E. T. Flynn 1976. Respiratory heat loss and pulmonary function during cold-gas breathing at high pressure. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol.Google Scholar
  12. Hong, S. K. 1963. Comparison of diving and nondiving women of Korea. Fed. Proc. 22: 831–833.PubMedGoogle Scholar
  13. Hong, S. K. 1973. Pattern of cold adaptation in women divers of Korea (ama). Fed. Proc. 32: 1614–1622.PubMedGoogle Scholar
  14. Kang, D. H., P. K. Kim, B. S. Kang, S. H. Song, and S. K. Hong 1965. Energy metabolism and body temperature of the ama. J. Appl. Physiol. 20: 46–50.PubMedGoogle Scholar
  15. Keatinge, W. R. 1969. Survival in Cold Water. Oxford: Blackwell Scientific Publications.Google Scholar
  16. Matsuda, M., H. Nakayama, H. Arita, J. F. Morlock, J. Claybaugh, R. M. Smith, and S. K. Hong 1978. Physiological responses to head-out immersion in water at 11 ATA. Undersea Biomed. Res. 5: 37– 52.Google Scholar
  17. Moore, T. O., J. F. Morlock, D. A. Lally. and S. K. Hong 1976. Thermal cost of saturation diving: respiratory and whole body heat loss at 16.1 ATA. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol.Google Scholar
  18. Morlock, J. F. 1975. Prediction of the various modes of heat loss from man in a dry and wet hyperbaric environment (Ph.D. Dissertation). Honolulu: Univ. of Hawaii.Google Scholar
  19. Paganelli, C. V., and F. K. Kurata 1977. Diffusion of water vapor in binary and ternary gas mixtures at increased pressures. Respirat. Physiol. 30: 15–26.Google Scholar
  20. Pugh, L. G. C., and O. G. Edholm 1955. The physiology of channel swimmers. Lancet 2: 761–768.Google Scholar
  21. Rapp, G. M. 1970. Convective mass transfer and the coefficient of evaporative heat loss from human skin. In: Physiological and Behavioral Temperature Regulation, edited by J. D. Hardy, A. P. Gagge, and J. A. J. Stolwijk. Springfield, IL: Charles C Thomas.Google Scholar
  22. Rapp, G. M. 1971. Convection coefficients of man in a forensic area of thermal physiology: heat transfer in underwater exercise. J. Physiol. (Paris) 63: 392–396.Google Scholar
  23. Rawlins, J. S. P., and J. F. Tauber 1971. Thermal balance at depth. In: Underwater Physiology IV. Proceedings of the Fourth Symposium on Underwater Physiology, edited by C. J. Lambertsen. New York: Academic Press.Google Scholar
  24. Raymond, L. W., E. Thalmann, G. Lindgren, H. C. Langworthy, W. H. Spaur, J. Crothers, W. Braith- waite, and T. Berghage 1975. Thermal homeostasis of resting man in helium-oxygen at 1-50 ATA. Undersea Biomed. Res. 2: 51–68.Google Scholar
  25. Reid, R. C., and T. K. Sherwood 1966. Properties of Gases and Liquids ( 2nd ed. ). New York: McGraw- Hill.Google Scholar
  26. Rennie, D. W. 1965. Thermal insulation of Korean diving women and non-divers in water. In: Physiology of Breath-Hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. CouncilGoogle Scholar
  27. Rennie, D. W. 1966. Body heat loss during immersion in water. In: Human Adaptability and Its Methodology, edited by H. Yashimura and J. S. Weiner. Tokyo: Japanese Society for the Promotion of Science.Google Scholar
  28. Smith, R. M., and J. Hanna 1975. Skinfolds and resting heat loss in cold air and water. J. Appl. Physiol. 39: 93–102.PubMedGoogle Scholar
  29. Varène, P., J. Timbal, H. Vieillefond, H. Guenard, and J. L’Huillier 1976. Energy balance of man in simulated dives from 1.5 to 31 ATA. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol.Google Scholar
  30. Webb, P. 1970. Body heat loss in undersea gaseous environments. Aerosp. Med. 41: 1282–1288.PubMedGoogle Scholar
  31. Webb, P. 1976. Thermal stress in undersea activity. In: Underwater Physiology V. Proceedings of the Fifth Symposium on Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Fed. Am. Soc. Exp. Biol.Google Scholar
  32. Webb, P. 1978. Calorimetric analysis of cold exposure in diving. In: Underwater Physiology VI. Proceedings of the Sixth Symposium on Underwater Physiology, edited by C. W. Shilling and M. W. Beckett. Bethesda, MD.: Fed. Am. Soc. Exp. Biol.Google Scholar
  33. Webb, P., S. J. Troutman, Jr., V. Frattali, R. H. Dressendorfer, J. Dwyer,T. O. Moore, J. F. Morlock, R. M. Smith, Y. Ohta, and S. K. Hong 1977. Hana Kai II: a 17-day dry saturation dive at 18.6 ATA. II. Energy balance. Undersea Biomed. Res. 4: 221–246.PubMedGoogle Scholar

References

  1. Brozek, J. 1965. Human Body Composition: Approaches and Application. New York: Pergamon Press.Google Scholar
  2. Carlyle, R. F., M. P. Garrard, and M. J. Stock 1978. Observations on some metabolic and hormone levels in the blood of men during simulated saturation dives to 420 metres of sea water, 43 bar, in helium-oxygen mixtures. J. Physiol. (Lond.) 285: 44P–45 P.Google Scholar
  3. Consolazio, C. F., R. E. Johnson, and L. J. Pecora 1963. Physiological Measurements of Metabolic Functions in Man. New York: McGraw-Hill.Google Scholar
  4. Elcombe, D. D., and J. H. Teeter 1973. Nitrogen narcosis during a 14-day continuous exposure to 5.2% 02 in N2 at pressure equivalent to 100 FSW (4 ata). Aerosp. Med. 44: 864–6869.PubMedGoogle Scholar
  5. Epstein, M. 1978. Renal effects of head-out water immersion in man: implications for an understanding of volume homeostasis. Physiol. Rev. 58: 529–581.PubMedGoogle Scholar
  6. Epstein, M., R. Levinson, J. Sancho, E. Haber. and R. Re 1977. Characterization of the renin-aldosterone system in decompensated cirrhosis. Circ. Res. 41: 818–829.PubMedGoogle Scholar
  7. Frattali, V., and R. Robertson 1973. Nutritional evaluation of humans during an oxygen-helium dive to a simulated depth of 1,000 ft. Aerosp. Med. 44: 14–21.PubMedGoogle Scholar
  8. Frattali, V., L. W. Raymond, M. Quesada, and R. Robertson 1974. Effects of hyperbaric helium-oxygen on caloric, fluid, mineral and nutrient requirements of saturation divers (abstract). Undersea Biomed. Res. 1: A29.Google Scholar
  9. Gemmill, C. L., and J. R. Brobeck 1968. Energy exchange. In: Medical Physiology ( 12th ed. ), edited by V. B. Mountcastle. St. Louis: C. V. Mosby.Google Scholar
  10. Graveline, D. E., and M. M. Jackson 1962. Diuresis associated with prolonged water immersion. J. Appl. Physiol. 17: 519–524.PubMedGoogle Scholar
  11. Hamilton, R. W., Jr., J. B. MacInnis, A. D. Noble, and H. R. Schreiner 1966. Saturation diving to 650 feet. Tech. Memorandum B-411. Tonawanda, NY: Ocean Systems, Inc.Google Scholar
  12. Hemingway, A., and W. M. Price 1964. The calorigenic action of catecholamines in warm acclimated and cold acclimated nonshivering cats. Int. J. Neuropharmacol. 3: 495–503.Google Scholar
  13. Hempelman, H. V. 1978. Observations on men at pressures of up to 300 msw (31 bar). Rept. R78401. Gosport, Hants, U.K.: Admiralty Marine Technology Establishment.Google Scholar
  14. Hong, S. K. 1973. Pattern of cold adaptation in women divers of Korea (ama). Fed. Proc. 32: 1614–1622.PubMedGoogle Scholar
  15. Hong, S. K. 1975. Body fluid balance during saturation diving. In: International Symposium on Man in the Sea, edited by S. K. Hong. Bethesda, MD.: Undersea Medical Society.Google Scholar
  16. Hong, S. K., J. R. Claybaugh, V. Frattali, R. Johnson, F. Kurata, M. Matsuda, A. A., McDonough, C. V. Paganelli, R. M. Smith, and P. Webb 1977a. Hana Hai II: a 17-day dry saturation dive at 18.6 ATA. III. Body fluid balance. Undersea Biomed. Res. 4: 247–266.PubMedGoogle Scholar
  17. Hong, S. K., R. M. Smith, P. Webb, and M. Matsuda 1977b. Hana Kai II: a 17-day dry saturation dive at 18.6 ATA. I. Objectives, design, and scope. Undersea Biomed. Res. 4: 211–220.PubMedGoogle Scholar
  18. Kang, B. S., D. S. Han, K. S. Paik, Y. S. Park, J. K. Kim, C. S. Kim, D. W. Rennie. and S. K. Hong 1970. Calorigenic action of norepinephrine in the Korean woman divers. J. Appl. Physiol. 29: 6–9.Google Scholar
  19. Kang, D. H., P. K. Kim, B. S. Kang, S. H. Song, and S. K. Hong 1965. Energy metabolism and body temperature of the ama. J. Appl. Physiol. 20: 46–50.PubMedGoogle Scholar
  20. Kang, B. S., S. H. Song, C. S. Suh. and S. K. Hong 1963. Changes in body temperature and basal metabolic rate of the ama. J. Appl. Physiol. 18: 483–488.Google Scholar
  21. Lambertsen, C. J., R. Gelfand, and J. M. Clark 1978. Predictive Studies IV: Work Capability and Physiological Effects in He-0 2 Excursions to Pressures of400–800–1200 and 1,600 Feet of Sea Water. Rept. 78–1. Philadelphia: Univ. of Pennsylvania, Institute for Environmental Medicine.Google Scholar
  22. Lusk, G. 1928. The Elements of the Science of Nutrition ( 4th ed. ). Philadelphia: W. B. Saunders.Google Scholar
  23. Matsuda, M., H. Nakayama, H. Arita, J. F. Morlock, J. Claybaugh, R. M. Smith, and S. K. Hong 1978. Physiological responses to head-out immersion in water at 11 ATA. Undersea Biomed. Res. 5: 37– 52.Google Scholar
  24. Matsuda, M., H. Nakayama, A. Itoh, N. Kirigaya, F. K. Kurata, R. H. Strauss, and S. K. Hong 1975. Physiology of man during a 10-day dry heliox saturation dive (SEATOPIA) to 7 ATA. I. Cardiovascular and thermoregulatory functions. Undersea Biomed. Res. 2: 101–118.PubMedGoogle Scholar
  25. Nakayama, H., S. K. Hong, J. Claybaugh, N. Matsui, Y. S. Park, Y. Ohta, K. Shiraki, and M. Matsuda 1980. Energy and body fluid balance during a 14-day dry saturation dive at 31 ATA (Seadragon IV). In: Underwater Physiology VII. Proceedings of the Seventh Symposium on Underwater Physiology, edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Medical Society.Google Scholar
  26. O’Reilly, J. P., B. Respicio, F. K. Kurata. and E. M. Hayashi 1977. Hana Kai II: a 17-day dry saturation dive at 18.6 ATA. VII. Auditory, visual, and gustatory sensations. Undersea Biomed. Res. 4: 307–314.Google Scholar
  27. Petrovykh, V. A.,O. A. Shovkoplyas, D. A. Mikhelson and E. N. Aranova 1977. Parameters of nitrogen, carbohydrate and lipid metabolism in man during prolonged exposure to hyperbaric conditions. Kosm. Biol. Aviakosm. Med. II: 48–50.Google Scholar
  28. Philp, R. B., C. W. Gowdey. and M. Prasad 1967. Changes in blood lipid concentration and cell counts following decompression sickness in rats and the influence of dietary lipid. Can. J. Physiol. Pharmacol. 45: 1047–1057.Google Scholar
  29. Raymond, L., J. Sode, W. Spaur, D. Uddin, R. Johnsonbaugh, R. Brauer, M. Knott, and J. Crothers 1974. Glucose homeostasis of man in helium oxygen at 1–50 atmospheres absolute. Undersea Biomed. Res. 1: 325–334.PubMedGoogle Scholar
  30. Reeves, E., J. W. Weaver, J. J. Benjamin, and C. H. Mann 1965. Comparison of physiological changes during long-term immersion to neck levels in water of 95°, 85° and 75°F. Rept. 9. Bethesda, MD: U.S. Naval Medical Research Institute.Google Scholar
  31. Rodahl, K. 1954. Eskimo Metabolism. Oslo: Skrifto.Google Scholar
  32. Segui, G., and V. Conti 1972. Compartement alimentaire de trois oceanauter au cours d’une experience de vie à saturation. Bull. Medsubhyp. 7: 15–18.Google Scholar
  33. Webb, P., and S. J. Troutman, Jr. 1970. An instrument for the continuous measurement of oxygen consumption. J. Appl. Physiol. 29: 867–871.Google Scholar
  34. Webb, P., S. J. Troutman, Jr., V. Frattali,R. H. Dressendorfer, J. Dwyer,T. O. Moore, J. F. Morlock, R. M. Smith, Y. Ohta. and S. K. Hong 1977. Hana Kai II: a 17-day dry saturation dive at 18.6 ATA. II. Energy balance. Undersea Biomed. Res. 4: 221–246.PubMedGoogle Scholar
  35. Weihl, A. C., H. C. Langworthy, R. P. Layton, P. F. Hoar, and L. W. Raymond 1978. Metabolic responses of resting divers immersed in 25.5°C and 33°C water. Undersea Biomed. Res. 5: (Suppl.) 31–32.Google Scholar

References

  1. Bradley, M. E., and J. Vorosmarti, Jr. 1974. Hyperbaric arthralgia during helium-oxygen dives from 100Google Scholar
  2. to 850 fsw. Undersea Biomed. Res. 1: 151–167.Google Scholar
  3. Kylstra, J. A., I. S. Longmuir. and M. Grace 1968. Dysbarism: Osmosis caused by dissolved gas? Science 161: 289.Google Scholar

References

  1. Adolfson, J. A., L. Goldberg, and T. E. Berghage 1972. Effects of increased ambient air pressures on standing steadiness in man. Aerosp. Med. 43: 520–524.PubMedGoogle Scholar
  2. Bennett, P. B., and E. J. Towse 1971. The high pressure nervous syndrome during a simulated oxygen-helium dive to 1500 feet. Electroencephalogr. Clin. Neurophysiol. 31: 383–393.PubMedGoogle Scholar
  3. Braithwaite, W. R., T. E. Berghage. and J. C. Crothers 1974. Postural equilibrium and vestibular response at 49.5 ATA. Undersea Biomed. Res. 1: 309–323.Google Scholar
  4. Brandt, J. F., and H. Hollien 1969. Underwater hearing thresholds in man as a function of water depth. J. Acoust. Soc. Am. 46: 893–897.PubMedGoogle Scholar
  5. Brauer, R. W. 1968. Seeking man’s depth level. Ocean Industry 3: 28–33.Google Scholar
  6. Buehlmann, A., H. Matthys, H. Overrath, P. B. Bennett, D. H. Elliott, andS. P. Gray 1970. Saturation exposures of 31 ATA in an oxygen-helium atmosphere with excursions to 36 ATA. Aerosp. Med. 41: 394–402.Google Scholar
  7. Edmonds, C., P. Freeman, R. Thomas, J. Tonkin, and F. A. Blackwood 1973. Otological Aspects of Diving. Sydney, Australia: Australian Medical Publishing Co.Google Scholar
  8. Farmer, J. C., and W. G. Thomas 1976. Ear and sinus problems in diving. In: Diving Medicine, edited by R. M. Strauss. New York: Grune and Stratton, p. 109–133.Google Scholar
  9. Farmer, J. C., W. G. Thomas, and M. J. Preslar 1971. Human auditory responses during hyperbaric helium- oxygen exposures. Surg. Forum 22: 456–458.PubMedGoogle Scholar
  10. Farmer, J. C., W. G. Thomas, R. W. Smith, and P. B. Bennett 1974. Vestibular function during HPNS (abstract). Undersea Biomed. Res. 1: A-ll.Google Scholar
  11. Fluur, E., and J. Adolfson 1966. Hearing in hyperbaric air. Aerosp. Med. 57: 783–785.Google Scholar
  12. Gauthier, G. M. 1976. Alterations of the human vestibulo-ocular reflex in a simulated dive at 62 ATA. Undersea Biomed. Res. 3: 103–112.PubMedGoogle Scholar
  13. Hamilton, P. M. 1957. Underwater hearing thresholds. J. Acoust. Soc. Am. 29: 792–794.Google Scholar
  14. Lester, J. C., and V. Gomez 1898. Observations made in the caisson of the New East River Bridge as to the effects of compressed air upon the human ear. Arch. Otolaryngol. 27: 1–19.Google Scholar
  15. Lundgren, C. E. G. 1965. Alternobaric vertigo—a diver’s hazard. Br. Med. J. 2: 511–513.PubMedGoogle Scholar
  16. McCabe, B. F. 1973. Vestibular physiology: its clinical application in understanding the dizzy patient. In: Basic Sciences and Related Disciplines. Otolaryngology, edited by M. M. Paparella and D. A. Schumrick. Philadelphia: Saunders, Vol. 1, p. 318–328.Google Scholar
  17. Montague, W. E., and J. F. Strickland 1961. Sensitivity of the water-immersed ear to high and low level tones. J. Acoust. Soc. Am. 33: 1376–1381.Google Scholar
  18. Terry, L., and W. L. Dennison 1966. Vertigo amongst Divers. Special Rep. 66–2. Groton, CT: U.S. Navy Submarine Medical Center.Google Scholar
  19. Thomas, W. G., J. K. Summitt, and J. C. Farmer 1974. Human auditory thresholds during deep saturation helium-oxygen dives. J. Acoust. Soc. Am. 55: 110–113.Google Scholar
  20. Tjernström, Ö. 1973. On alternobaric vertigo: experimental studies. Försvarsmedicine 9: 410–415.Google Scholar
  21. Vorosmarti, J., and J. J. Bradley 1970. Alternobaric vertigo in military divers. Mil. Med. 135: 182–185.PubMedGoogle Scholar
  22. Wainwright, W. N. 1958. Comparison of hearing thresholds in air and in water. J. Acoust. Soc. Am. 30: 1025–1029.Google Scholar

References

  1. Beehler, C. C., N. L. Newton, J. F. Culver. andT. Tredici 1964. Retinal detachment in adult dogs resulting from toxicity. Arch. Ophthal. 71: 665–670.PubMedGoogle Scholar
  2. Behnke, A. R., I. S. Forbes, and E. P. Motley 1936. Circulatory and visual effects of oxygen at 3 atmospheres pressure. Am. J. Physiol. 114: 436–442.Google Scholar
  3. Bennett, P. B., K. N. Ackles, and V. J. Cripps 1969. Effects of hyperbaric nitrogen and oxygen on auditory evoked responses in man. Aerosp. Med. 40: 521–525.PubMedGoogle Scholar
  4. Duntley, S. Q. 1958. Nomographs for calculating visibility by swimmers. I. Natural light. Rep. 3–1. Project NS714–100, Task 3. Washington, DC: U.S. Navy Bureau of Ships.Google Scholar
  5. Ferris, S. H. 1972a. Improvement of absolute distance estimation underwater. Percept. Mot. Skills 35: 299–305.PubMedGoogle Scholar
  6. Ferris, S. H. 1972b. Magnitude estimation of absolute distance underwater. Percept. Mot. Skills 35: 963–971.PubMedGoogle Scholar
  7. Ferris, S. H. 1973. Improving absolute distance estimation in clear and in turbid water. Percept. Mot. Skills 36: 771–776.PubMedGoogle Scholar
  8. Gallagher, T. J., R. E. Mammen, F. T. Nobrega. and T. Turaids 1963. Effects of various oxygen partial pressures on scotopic and photopic vision. Rep. United States Naval Aerospace Crew Equipment Laboratory.Google Scholar
  9. Kelley, J. S., P. G. Burch, M. E. Bradley, and D. E. Campbell 1968. Visual function in divers at 15 to 26 atmospheres pressure. Mil. Med. 133: 827–829.PubMedGoogle Scholar
  10. Kinney, J. A. S., and S. M. Luria 1970. Conflicting visual and tactual-kinesthetic stimulation. Percept. Psychophys. 8: 189–192.Google Scholar
  11. Kinney, J. A. S., and C. L. McKay 1971. The visual evoked responses as a measure of nitrogen narcosis in Navy divers. Rep. 664. Groton, CT: U.S. Naval Submarine Medical Research Laboratory.Google Scholar
  12. Kinney, J. A. S., R. Hammond, R. Gelfand. and J. Clark 1978. Visual evoked cortical potentials in men during compression and saturation in He-02 equivalent to 400, 800, 1200 and 1600 feet of seawater. Electroencephalogr. Clin. Neurophysiol. 44: 151–171.Google Scholar
  13. Kinney, J. A. S., S. M. Luria, S. H. Ferris, and H. M. Paulson 1972. Optical and visual tests on the Navy prototype hard hat diving system. Rep. 731. Groton, CT: U.S. Naval Submarine Medical Research Laboratory.Google Scholar
  14. Kinney, J. A. S., S. M. Luria, M. S. Strauss, C. L. McKay, and H. M. Paulson 1974. Shallow Habitat Air Dive Series (SHAD I and II): The effects of visual performance and physiology. Rep. 793. Groton, CT: U.S. Naval Submarine Medical Research Laboratory.Google Scholar
  15. Kinney, J. A. S., S. M. Luria. and D. O., Weitzman 1967. Visibility of colors underwater. J. Opt. Soc. Am. 57: 802 — 809.Google Scholar
  16. Kinney, J. A. S., S. M. Luria. and D. O. Weitzman 1969. Visibility of colors underwater using artificial illumination. J. Opt. Soc. Am. 59: 624–628.Google Scholar
  17. Kinney, J. A. S., S. M. Luria, D. O. Weitzman. and H. Markowitz 1970. Effects of diving experience on visual perception under water. Rep. 612. Groton. CT: Naval Submarine Medical Research Laboratory.Google Scholar
  18. Kinney, J. A. S., C. L. McKay, and R. A. Gordon 1977. The use of fluorescein angiography to study oxygen toxicity. Ann. Ophthal. 9: 989–995.PubMedGoogle Scholar
  19. Kinney, J. A. S., C. L. McKay, and S. M. Luria 1977. Visual evoked responses and EEG’s of 16 divers breathing air at 7 ATA. Undersea Biomed. Res. 4: 55–66.PubMedGoogle Scholar
  20. Langley, T. D., and R. W. Hamilton, Jr. 1975. Somatic-evoked brain responses as indicators of adaptation to nitrogen narcosis. Aviat. Space Environ. Med. 46: 147–151.PubMedGoogle Scholar
  21. Luria, S. M., and J. A. S. Kinney 1969. Visual acuity under water without a face mask. Rep. 581. Groton, CT: U.S. Naval Submarine Medical Research Laboratory.Google Scholar
  22. Luria, S. M., and J. A. S. Kinney 1970. Underwater vision. Science 167: 1454–1461.PubMedGoogle Scholar
  23. Luria, S. M., S. H. Ferris, C. L. McKay, J. A. S. Kinney, and H. M. Paulson 1974. Vision through various scuba facemasks. Human Factors 16: 395–405.PubMedGoogle Scholar
  24. Montabana, D. J., and C. J. Lambertsen 1978. Visual function. In: Predictive Studies IV: Work Capability and Physiological Effects in He-0 2 Excursions to Pressures of400–800–1200 and 1600 Feet of Sea Water,Google Scholar
  25. edited by C. J. Lambertsen, R. Gelfand, and J. M. Clark. Philadelphia: Institute for Environmental Medicine, Univ. of Pennsylvania.Google Scholar
  26. National Oceanic and Atmospheric Administration 1975. The NOAA Diving Manual. Washington, DC: U.S. Dept. of Commerce.Google Scholar
  27. Nichols, C. W., and C. J. Lambertsen 1969. Effects of high oxygen pressures on the eye. N. Engl. J. Med. 281: 25–30.PubMedGoogle Scholar
  28. Noell, W. K. Effects of high and low oxygen tension on the visual system. Paper presented at the First International Symposium on Submarine and Space Medicine, New London, CT, 1958. In: Environmental Effects on Consciousness: Proceedings, edited by K. E. Schaefer. New York: Macmillan, 1962.Google Scholar
  29. Patz, A. 1965. Effect of oxygen on immature retinal vessels. Invest. Ophthal. 4: 988–999.PubMedGoogle Scholar
  30. Rostain, J. C., and S. Dimov, 1976. Potentials évoqués visuels et cycle d’excitabilité au cours d’une plongée simulée à-610 m en atmosphère helium-oxygène (Physalie VI). Electroencephalogr.Clin. Neurophvsiol. 41: 287–300.Google Scholar
  31. Simon, D. R., and M. E. Bradley 1978. Corneal edema in divers wearing hard contact lenses. Am. J. Ophthalmol. 85: 462–464.PubMedGoogle Scholar

References

  1. Arborelius, M., Jr., U. I. Balldin, B. Liua. and C. E. G. Lundgren 1972. Hemodynamic changes in man during immersion with the head above water. Aerosp. Med. 43: 592–598.Google Scholar
  2. Center for Disease Control 1980. Underwater diving deaths—Florida. Morbid. Mortal. Weekly Rep. 29: 6.Google Scholar
  3. Comroe, J. H., Jr. 1974. Physiology of Respiration ( 2nd ed. ). Chicago: Year Book Medical Publishers.Google Scholar
  4. Craig, A. B., Jr. 1961. Underwater swimming and loss of consciousness. JAMA 176: 255–258.PubMedGoogle Scholar
  5. Craig, A. B., Jr. 1968. Depth limits of breath hold diving. Respirat. Physiol. 5: 14–22.Google Scholar
  6. Craig, A. B., Jr. 1976. Summary of 58 cases of loss of consciousness during underwater swimming and diving. Med. Sci. Sports 8 (3): 171–175.PubMedGoogle Scholar
  7. Cross, E. R. 1965. Taravana diving syndrome in the Tuamotu diver. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 207–219.Google Scholar
  8. Edmonds, C., C. Lowry, and J. Pennefather 1976. Diving and Subaquatic Medicine. Mosman, Australia: Diving Medical Centre.Google Scholar
  9. Engle, G. L., E. B. Ferris, J. P. Webb, and C. D. Stevens 1946. Voluntary breath-holding. II. The relation of the maximum time of breath-holding to the oxygen tension of the inspired air. J. Clin. Invest. 25: 729–733.Google Scholar
  10. Ferris, E. B., G. L. Engle, C. D. Stephens, and J. P. Webb 1946. Voluntary breath-holding. III. The relation of the maximum time of breath-holding to the oxygen and carbon dioxide tensions of arterial blood, with a note on its clinical and physiological significance. J. Clin. Invest. 25: 734–743.Google Scholar
  11. Fowler, W. S. 1954. Breaking point of breath-holding. J. Appl. Physiol. 6: 539–545.PubMedGoogle Scholar
  12. Heath, J. R., and C. J. Irwin 1968. An increase in breath-hold time appearing after breath-holding. Respirat. Physiol. 4: 73–77.Google Scholar
  13. Heistad, D. D., F. M. Abboud. and J. W. Eckstein 1968. Vasoconstrictor response to simulated diving in man. J. Appl. Physiol. 25: 542–549.Google Scholar
  14. Herber, F. J. 1948. Metabolic changes of blood and tissue gases during asphyxia. Am. J. Physiol. 152: 687–695.PubMedGoogle Scholar
  15. Hesser, C. M. 1965. Breath holding under high pressure. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 165–181.Google Scholar
  16. Hill, L., and M. Flack 1908. The effect of excess C02 and of want of oxygen upon the respiration and the circulation. J. Physiol. (Lond.) 37: 77–111.Google Scholar
  17. Irving, L. 1965. Gas transport mechanism. In: Handbook of Physiology, Respiration, edited by W. Fenn and H. Rahn. Washington, DC: American Physiological Society, Sect. 3, Vol. I, p. 177–212.Google Scholar
  18. Klocke, R., and H. Rahn 1959. Breath holding after breathing of oxygen. J. Appl. Physiol. 14: 689–693.PubMedGoogle Scholar
  19. Lanphier, E. H. 1965. Application of decompression tables to repeated breath-hold dives. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 227–236.Google Scholar
  20. Lanphier, E. H., and H. Rahn 1963a. Alveolar gas exchange during breath-hold diving. J. Appl. Physiol. 18: 471–477.Google Scholar
  21. Lanphier, E. H., and H. Rahn 1963b. Alveolar gas exchange during breath holding with air. J. Appl. Physiol. 18: 478–482.Google Scholar
  22. McWhirter. N. 1980. Guiness Book of World Records. New York: Sterling Publishing Co.Google Scholar
  23. Mithoefer, J. C. 1965a. Breath holding. In: Handbook of Physiology. Respiration, edited by W. Fenn andGoogle Scholar
  24. H. Rahn. Washington, DC: American Physiology Society, Sect. 3, Vol. II, p. 1011–1025.Google Scholar
  25. Mithoefer, J. C. 1965b. The breaking point of breath-holding. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 195–205.Google Scholar
  26. Murdaugh, V. H, Jr., E. D. Robin, J. E. Miller, W. F. Drewry, and E. Weiss 1966. Adaptations to divingGoogle Scholar
  27. in the harbor seal: cardiac output during diving. Am. J. Physiol. 210: 176–180.Google Scholar
  28. Olsen, C. R., D. D. Fanestil. and P. F. Scholander 1962. Some effects of breath holding and apneicGoogle Scholar
  29. underwater diving on cardiac rhythm in man. J. Appl. Physiol. 17: 461–469.Google Scholar
  30. Otis, A. B., H. Rahn, and W. O. Fenn 1948. Alveolar gas changes during breath holding. Am. J. Physiol. 152: 674–686.PubMedGoogle Scholar
  31. Paulev, P. 1965. Decompression sickness following repeated breath-hold dives. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./ Natl. Res. Council, p. 221–226.Google Scholar
  32. Paulev, P. 1968. Cardiac rhythm during breath holding and water immersion in man. Acta. Physiol. Scand. 73: 139–150.PubMedGoogle Scholar
  33. Rahn, H. 1964. Oxygen stores of man. In: Oxygen in the Animal Organism, edited by F. Dickens and E. Neil. New York: Pergamon Press.Google Scholar
  34. Rahn, H. 1965. The physiological stresses of the Ama. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 113–138.Google Scholar
  35. Sasamoto, H. 1965. The electrocardiogram pattern of the diving ama. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 271–280.Google Scholar
  36. Schaefer, K. E. 1965. Adaptation to breath-hold diving. In: Physiology of Breath-hold Diving and the Ama of Japan, edited by H. Rahn and T. Yokoyama. Washington, DC: Natl. Acad. Sci./Natl. Res. Council, p. 237–252.Google Scholar
  37. Schaefer, K. E., R. D. Allison, J. H. Dougherty, C. R. Carey, R. Walker, F. Yost, and D. Parker 1968. Pulmonary and circulatory adjustments determining the limits in breathhold diving. Science 162: 1020–1023.PubMedGoogle Scholar
  38. Song, S. H., D. H. Kang, B. S. Kang. and S. K. Hong 1963. Lung volumes and ventilatory responses toGoogle Scholar
  39. high CO2 and low O2 in the ama. J. Appl. Physiol. 18: 466–470.Google Scholar
  40. Speck, D. F., and D. S. Bruce 1978. Effect of varying thermal and apneic conditions on the human divingGoogle Scholar
  41. reflex. Undersea Biomed. Res. 5: 9–14.Google Scholar
  42. Spencer, M. P., and H. Okino 1972. Venous gas emboli following repeated breathhold dives (abstract). Fed. Proc. 31: 355.Google Scholar
  43. Sterba, J. A., and C. E. G. Lundgren 1979. Influence of water temperature on breath-holding time inGoogle Scholar
  44. submerged man (abstract). Undersea Biomed. Res. Suppl. 6: 29.Google Scholar
  45. Stigler, R. 1911. Die Kraft unserer Inspirations Muskulatur. Pfluegers Arch. 139: 234–254.Google Scholar
  46. Strauss, M. B., and P. Wright 1969. A diving casualty suggesting a case of thoracic squeeze. Rep. 584.Google Scholar
  47. Groton, CT: Naval Submarine Medical Center.Google Scholar
  48. Strømme, S. B., and A. S. Blix 1976. Indirect evidence for arterial chemoreceptor reflex facilitation by face immersion in man. Aviat. Space Environ. Med. 47: 597–599.Google Scholar
  49. Vaughan, V. C., R. J. McKay, and W. E. Nelson 1975. In: Nelson Textbook of Pediatrics (10th ed.).Google Scholar
  50. Philadelphia: W. B. Saunders.Google Scholar
  51. Wildenthal, K., J. M. Atkins, S. J. Leshin, and C. L. Skelton 1975. The diving reflex used to treat paroxysmal atrial tachycardia. Lancet 1: 12.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • N. R. Anthonisen
  • Claes E. G. Lundgren
  • A. J. Påsche
  • Delbert E. Evans
  • Peter B. Bennett
  • Albert R. BehnkeJr.
  • William P. Fife
  • C. Gresham Bayne
  • Suk Ki Hong
  • Mark E. Bradley
  • Joseph C. FarmerJr.
  • Jo Ann S. Kinney
  • Donald D. Hickey

There are no affiliations available

Personalised recommendations