Self Diffusion Constant and Viscosity of Charged Polystyrene Colloids

  • B. Dozier
  • H. M. Lindsay
  • P. M. Chaikin
  • H. Hervet
  • L. Leger


We have used the “Forced Rayleigh scattering” technique with spiropyran dyed polystyrene spheres in aqueous suspension, to measure the self diffusion as a function of the strength of interaction between the particles. The latter quantity was modified both by adding electrolyte and by changing the particle concentration, as well as by using spheres with different diameters and charges. We find that the diffusion constant decreases monotonically from the Stokes value as the repulsive interaction is increased, until the interactions are sufficiently strong to form a colloidal crystal. At this point there is a first order transition indicated by the decrease of the diffusion constant by ~ four orders of magnitude and the presence of Bragg reflections. These measurements are compared with viscosity measurements done in the liquid and solid states, with quasielastic light scattering measurements and with models for diffusion and viscosity in interacting systems.


Electrolyte Concentration Diffusion Constant Colloidal Crystal Strain Relaxation Interparticle Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Alfrey Jr., E. B. Bradford and J. W. Vanderhoff, J. Opt. Soc. Am. 44, 603, (1954).CrossRefGoogle Scholar
  2. 2.
    P. A. Hiltner and I. M. Krieger, J. Phys. Chem. 73, 2386 (1969).CrossRefGoogle Scholar
  3. 3.
    R. Crandall and R. S. Williams, Phys. Lett. 48A, 225 (1974).Google Scholar
  4. 4.
    I. Snook and W. Van Megen, Faraday Transactions II, 72 216 (1976).Google Scholar
  5. 5.
    P. Pieranski, E. Dubois-Violette, F. Rothen and L. Strzelecki, J. de Physique, 41, 369 (1980).Google Scholar
  6. 6.
    S. Mitaku, T. Ohtsuke and K. Okano, Jap. J. Ap. Phys. 19., 439 (1980)CrossRefGoogle Scholar
  7. S. Mitaku, T. Ohtsuki, E. Enari, A. Kishimoto and K. Okano, J. Jap. Ap. Phys. 17, 305 (1978).CrossRefGoogle Scholar
  8. 7.
    H. M. Lindsay and P. M. Chaikin, to be published in J. Chem. Phys.Google Scholar
  9. 8.
    D. W. Schaefer and B. J. Ackerson, Phys. Rev. Letters, 35,1448 1975CrossRefGoogle Scholar
  10. 9.
    J. C. Brown, P. N. Pusey, J. W. Goodwin and R. H. Ottewill, J. Phys. A, 8, 664 (1975).CrossRefGoogle Scholar
  11. 10.
    P. N. Pusey, J. Phys. A. 11, 119 (1978).CrossRefGoogle Scholar
  12. 11.
    D. W. Schaefer, J. Chem. Phys. 66, 3980 (1977).CrossRefGoogle Scholar
  13. 12.
    D. W. Pohl, S. E. Scharz, V. Irniger, Phys. Rev. Letters 32, 31 (1973).Google Scholar
  14. 13.
    Dow Diagnostics, P. 0. Box 68511, Indianapolis, Indiana 46268.Google Scholar
  15. 14.
    N. A. Clark and B. J. Ackerson, Phys. Rev. Letters 46, 123 (1981).CrossRefGoogle Scholar
  16. 15.
    Landau and Lifshitz, Elasticity, Pergamon Press, Oxford, 1979.Google Scholar
  17. 16.
    H. J. V. Tyrrell, Diffusion and Heat Flow in Liquids, Butter-worth and Co., London, 1961.Google Scholar

Copyright information

© Plenum Press New York 1984

Authors and Affiliations

  • B. Dozier
    • 1
  • H. M. Lindsay
    • 1
  • P. M. Chaikin
    • 1
  • H. Hervet
    • 2
  • L. Leger
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaLos AngelesUSA
  2. 2.College de FranceParisFrance

Personalised recommendations