The Effect of Twist on Biaxial Ordering in the Cholesteric Phase

  • Z. Yaniv
  • M. E. Neubert
  • J. W. Doane

Abstract

Deuterium magnetic resonance and optics have been used to study chiral nematic materials composed of compounds selectively deuterated at specific sites. The deuterated materials are 4-methoxybenzylidene-4′-butylaniline (MBBA) selectively deuterated in the α position (MBBA-α-d2) and on one aromatic ring (MBBA-2′-3′-5′-6′-d4). To each of these materials was added 4-methoxybenzylidene-4′-[(+)-2-methyl-butyl]aniline (MBMBA) in various quantities to obtain samples of different pitch length. From deuterium spectral patterns, values were obtained for the asymmetry parameter η, from different sites of the molecule. These data show that the mechanism responsible for 2H-NMR biaxiality is anisotropic fluctuations of the molecular long axis. Measurements of η in the vicinity of the blue phase suggest that this phase may be initiated by a characteristic value of η in these materials. New 2H-NMR spectral patterns of the blue phase are shown.

Keywords

Cholesterol Aniline Deuterium Butyl Schiff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Doane, in Magnetic Resonance of Transitions, edited by F. J. Owens, C. P. Poole, Jr., H. A. Farach, Academic Press, New York, 1979, pp. 171–246.Google Scholar
  2. 2.
    P. G. de Gennes, The Physics of Liquid Crystals, Oxford University Press, London, 1974.Google Scholar
  3. 3.
    Z. Yaniv, N. A. P. Vaz, G. Chidichimo, J. W. Doane, Phys. Rev. Lett. 47, 46 (1981).CrossRefGoogle Scholar
  4. 4.
    R. G. Priest, T. C. Lubensky, Phys. Rev. A 9, 893 (1974).CrossRefGoogle Scholar
  5. 5.
    A. Wulf, J. Chem. Phys. 59, 1497, 6596 (1973).Google Scholar
  6. 6.
    S. A. Brazovskii, S. G. Dmitriev, Zh. Eksp. Theor. Fiz. 69, 979 (1975);Google Scholar
  7. S. A. Brazovskii, S. G. Dmitriev Soviet Physics JETP 42, 497 (1976).Google Scholar
  8. 7.
    B. W. Van der Meer, G. Vertogen, Phys. Lett. 59A, 279 (1976).Google Scholar
  9. 8.
    H. Schroeder, in Liquid Crystals of One- and Two-Dimensional Order, edited by W. Helfrich, G. Heppke, Springer-Verlag, Berlin, 1980, p. 196.Google Scholar
  10. 9.
    D. W. Berreman, Terry J. Scheffer, Phys. Rev. A 5, 1397 (1972).CrossRefGoogle Scholar
  11. 10.
    P. H. Keyes, C. C. Yang, J. Phys. (Paris), Colloq. 4, C3–376 (1979).Google Scholar
  12. 11.
    N. Vaz, M. Neubert J. W. Doane, Mol. Cryst. Liq. Cryst. 68, 959 (1981).CrossRefGoogle Scholar
  13. 12.
    D. Photinos, J. W. Doane, Mol. Cryst. Liq. Cryst. 76, 159 (1981).CrossRefGoogle Scholar
  14. 13.
    G. Chidichimo, Z. Yaniv, N. A. P. Vaz, J. W. Doane, Phys. Rev. A 25, 1077 (1982).CrossRefGoogle Scholar
  15. 14.
    N. A. P. Vaz, G. Chidichimo, Z. Yaniv, J. W. Doane, Phys. Rev. A (1982) (to appear).Google Scholar
  16. 15.
    T. Hashimoto, S. Ebisu, N. Inaba and H. Kawai, Polymer J. 13, 701 (1981).CrossRefGoogle Scholar
  17. 16.
    A. Shetty, Ph.D. Thesis, Kent State University, Kent, Ohio (1981).Google Scholar
  18. 17.
    P. J. Collings, J. R. McColl, J. Chem. Phys. 69, 3371 (1978).CrossRefGoogle Scholar
  19. 18.
    E. T. Samulski, Z. Luz, J. Chem. Phys. 73, 142 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Z. Yaniv
    • 1
  • M. E. Neubert
    • 1
  • J. W. Doane
    • 1
  1. 1.Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations