Advertisement

Destruction of Tumor Cells by Macrophages: Mechanisms of Recognition and Lysis and Their Regulation

  • Scott D. Somers
  • William J. Johnson
  • Dolph O. Adams
Part of the Cancer Treatment and Research book series (CTAR, volume 27)

Abstract

Mononuclear phagocytes, located throughout all tissues of the body, serve a multitude of major defensive and homeostatic functions [1]. One of the most important functions is the pivotal role macrophages can play in host protection against the development and spread of neoplasia [2]. Yet, the consistent and successful immunotherapy of human cancer remains an elusive goal [3]. Understanding the complex mechanisms regulating macrophage-mediated tumor cell destruction may ultimately lead to a rational basis for immunomodulation and, hence, successful immunologically based therapy of neoplastic diseases.

Keywords

Peritoneal Macrophage Human Monocyte Phorbol Myristate Acetate Murine Macrophage Selective Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nathan, C.F., Cohn, Z.A. 1985. Cellular components of inflammation: monocytes and macrophages. In: Textbook Rheumatology, (Kelly, W., Harris, E., Ruddy, S., Hedge, R., eds.), W.B. Saunders, New York 2nd ed. p. 144.Google Scholar
  2. 2.
    Adams, D.O., Snyderman, R. 1979. Do macrophages destroy nascent tumors? J. Natl. Cancer Inst. 16: 1341.Google Scholar
  3. 3.
    Baldwin, R.W. 1982. Manipulation of host resistance in cancer therapy. Springer Sem. Immunopathol. 5: 113.Google Scholar
  4. 4.
    Nathan, C.F. 1983. Secretory products in cytotoxicity. In: Biological Response Mediators and Modifiers. Academic Press, New York, p. 221.Google Scholar
  5. 5.
    Mosser, D.M., Edelson, P.J. 1984. Mechanisms of microbial entry and endocytosis by mononuclear phagocytes. Contemp. Topics Immunobiol. 13: 71.Google Scholar
  6. 6.
    Silverstein, S.C., Steinman, R.M., Cohn, Z.A. 1977. Endocytosis. Annual Rev. Biochem. 46: 669.Google Scholar
  7. 7.
    Steinman, R.M., Mellman, I.S., Muller, W.A., Cohn, Z.A. 1983. Endocytosis and recycling of plasma membrane. J. Cell. Biol. 96: 1.PubMedGoogle Scholar
  8. 8.
    Adams, D.O., Hamilton, T.A. 1984. The cell biology of macrophage activation. Ann. Review of Immunol. 2: 293.Google Scholar
  9. 9.
    Adams, D.O., Marino, P.A. 1981. Evidence for a multistep mechanism of cytolysis by BCG-activated macrophages: the interrelationship between capacity for cytolysis, target binding, and secretion of cytolytic factor. J. Immunol. 126: 981.PubMedGoogle Scholar
  10. 10.
    Mauel, J. 1982. Effector and escape mechanisms in host-parasite relationships. Prog. Allergy 31: 1.Google Scholar
  11. 11.
    Marino, P.A., Adams, D.O. 1980. Interaction of bacillus calmette-guerin-activated macrophages and neoplastic cells in vitro. II. The relationship of selective binding to cytolysis. Cell. Immunol. 54: 26.PubMedGoogle Scholar
  12. 12.
    Marino, P.A., Adams, D.O. 1982. The capacity for activated murine macrophages for augmented binding of neoplastic cells: analysis of induction by lymphokine containing MAF and kinetics of the reaction. J. Immunol. 128: 2816.PubMedGoogle Scholar
  13. 13.
    Adams, D.O., Lewis, J.G., Joihnson, W.J. 1984. Multiple modes of cellular injury by macrophages: requirement for different forms of effector activation. In: Progress in Immunology V. Academic Press Japan, Inc., pp. 1009–1118.Google Scholar
  14. 14.
    Adams, D.O., Lewis, J.G., Johnson, W.J. 1984. Analysis of interactions between immunomodulators and mononuclear phagocytes: different modes of tumor cell injury require different forms of macrophage activation. Behring Inst. Research Communications. 74: 132–139.Google Scholar
  15. 15.
    Hamilton, T.A., Fishman, M. Grawfod, G., Look, A.T. 1982. Macrophage-mediated cytostatic activity blocks lymphoblast cell cycle progression independently in both G 1 phase and S phase. Cell. Immunol. 77: 233.Google Scholar
  16. 16.
    Keller, R. 1973. Cytostatic elimination of syngeneic rat tumor cells in vitroby nonspecifically-activated macrophages. J. Exp. Med. 138: 625.PubMedGoogle Scholar
  17. 17.
    Keller, R. 1976. Susceptibility of normal and transformed cell lines to cytostatic and cytocidal effects exerted by macrophages. J. Natl. Cancer Inst. 56: 369.PubMedGoogle Scholar
  18. 18.
    Evans, R. 1982. Macrophages and neoplasms: new insights and their implication in tumor immunobiology. Can. Metastasis Rev. 1: 227.Google Scholar
  19. 19.
    Nathan, C.F., Brukner, L.H., Kaplan, G., Unkeless, J., Cohn, Z.A. 1980. Role of activated macrophages in antibody-dependent lysis of tumor cells. J. Exp. Med. 152: 183.PubMedGoogle Scholar
  20. 20.
    Walker, W. 1977. Mediation of macrophage cytolytic and phagocytic activities by antibodies of different classes and class-specific Fc receptors. J. Immunol. 119: 367.PubMedGoogle Scholar
  21. 21.
    Kurisu, M., Dohi, N., Yamazaki, M., Mizuno, D. 1980. Macrophage-tumor interaction induced by antibody in antibody-dependent, macrophage-mediated tumor lysis. J. Reticuloendothel. Soc. 28: 237.PubMedGoogle Scholar
  22. 22.
    Evans, R., Alexander, P. 1976. Mechanisms of extracellular killing of nucleated mammalian cells by macrophages. In: Immunobiology of the Macrophage ( D.S. Nelson, ed.), Academic Press, New York, p. 536.Google Scholar
  23. 23.
    Meltzer, M.S., Tucker, R.W., Sanford, K.K., Leonard, E.J. 1975. Interaction of BCG-activated macrophages with neoplastic and nonneoplastic cell lines in vitro: Quantitation of the cytotoxic reaction by release of tritiated thymidine from pre-labeled target cells. J. Natl. Cancer Inst. 54: 1177.PubMedGoogle Scholar
  24. 24.
    Bongrard, P., Capo, C., Depieds, R. 1982. Physics of cell adhesion. Progress in Surface Science 12: 217.Google Scholar
  25. 25.
    Bell, G.I. 1978. Models for the specific adhesion of cells to cells. Science 200: 618.PubMedGoogle Scholar
  26. 26.
    Edelman, G.M. 1983. Cell adhesion molecules, Science 219: 450.PubMedGoogle Scholar
  27. 27.
    Frazier, W.A., Glaser, L., Gottlieb, G. (Eds.) 1982. Cellular Recognition. Alan R. Liss, Inc., New York.Google Scholar
  28. 28.
    Umbrect, J., Roseman, S. 1976. A requirement for reversible binding between aggregating embkryonic cells before stable adhesion. J. Biol. Chem. 250: 9360.Google Scholar
  29. 29.
    Segal, D.M., Stephany, D.A. 1984. The mechanism of intercellular aggregation. I. The kinetics of the Fc1 receptor-mediated aggregation of P388D1 cells with antibody-coated lymphocytes at 4 °C. J. Immunol. 132: 1924.PubMedGoogle Scholar
  30. 30.
    McClay, D.R., Wessel, G.M., Marchase, R.B. 1981. Intercellular recognition: quantitation of initial binding events. Proc. Natl. Acad. Sci. U.S.A. 78: 4976.Google Scholar
  31. 31.
    Guarnaccia, S.P., Schnaar, R.L. 1982. Hepatocyte adhesion to immobilized carbohydrates. I. Sugar recognition is followed by energy-dependent strengthening. J. Biol. Chem. 257: 14288.Google Scholar
  32. 32.
    Guarnaccia, S.P., Kuhlenschmidt, M.S., Slife, S.W., Schnaar, R.L. 1982. Hepatocyte adhesion to immobilized carbohydrates. II. Cellular modification of the carbohydrate surface. J. Biol. Chem. 257: 14293.PubMedGoogle Scholar
  33. 33.
    Bell, G.I., Dembo, M., Bongrand, P. 1984. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45: 1051.Google Scholar
  34. 34.
    Edelman, G.M. 1984. Cell adhesion and morphogenesis: the regulatory hypothesis. Proc. Natl. Acad. Sci. 81: 1460.PubMedGoogle Scholar
  35. 35.
    Edelman, G.M. 1984. Cell-adhesion molecules: a molecular basis for animal form. Sci. Am. 250: 118.Google Scholar
  36. 37.
    Frazier, W., Glaser, L. 1979. Surface components and cell recognition. Ann. Rev. Biochem. 48: 491.PubMedGoogle Scholar
  37. 38.
    Rauvala, H., Prieels, J.-P., Finne, J. 1983. Cell adhesion mediated by a purified fucosyltransferase. Proc. Natl. Acad. Sci. 80: 3991.PubMedGoogle Scholar
  38. 39.
    Hynes, R.O., Yamada, K. 1982. Fibronectins: multifunctional modular glycoproteins. J. Cell Biol. 95: 369.PubMedGoogle Scholar
  39. 40.
    Grunnell, F. 1979. Cellular adhesiveness and extracellar substrates. Inter. Rev. Cytol. 53: 65.Google Scholar
  40. 41.
    Ellenberger, A., Nussenzwieg, V. 1977. The role of membrane receptors for C3b and C3d in phagocytosis. J. Exp. Med. 145: 357.Google Scholar
  41. 42.
    Unkeless, J.C. 1977. The presence of two Fc receptors on mouse macrophages: evidence from a variant cell line and differential trypsin sensitivity. J. Exp. Med. 145: 931.PubMedGoogle Scholar
  42. 43.
    Unkeless, J.C. 1969. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J. Exp. Med. 150: 580.Google Scholar
  43. 44.
    Unkeless, J.C., Fleit, H., Mellman, I.S. 1981. Structural aspects and heterogeneity of immunoglobulin Fc receptors. Adv. Immunol. 31: 247.Google Scholar
  44. 45.
    Diamond, B., Scharff, M.D. 1980. IgG1 and IgG2b share the Fc receptor on mouse macrophages. J. Immunol. 125: 631.PubMedGoogle Scholar
  45. 46.
    Ralph, P., Nakoinz, I., Diamond, B., Yelten, D. 1980. All classes of murine IgG antibody mediate macrophage phagocytosis and lysis of erythrocytes. J. Immunol. 125: 1885.PubMedGoogle Scholar
  46. 47.
    Ralph, P., Nakoinz, I. 1983. Cell-mediated lysis of tumor targets directed by murine monoclonal antibodies of IgM and all IgG isotypes. J. Immunol. 131: 1028.PubMedGoogle Scholar
  47. 48.
    Ralph, P. 1983. Immunoglobulin class of antibody effective in macrophage ADCC. In: Macrophage-mediated Antibody-dependent Cellular Cytotoxicity ( H.S. Koren, ed.), Marcell Dekker, New York, p. 71.Google Scholar
  48. 49.
    Matthews, J.J., Collins, J.J., Roloson, G.J., Thiel, H.-J., Bolognesi, D.P. 1981. Immuno-logic control of the ascites form of murine adenocarcinoma 755. IV. Characterization of the protective antibody in hyperimmune serum. J. Immunol. 126: 2332.PubMedGoogle Scholar
  49. 50.
    Langlois, A.J., Matthews, T.J., Roloson, G.J., Thiel, H.-J., Collins, J.J., Bolognesi, D.P. 1981. Immunologic control of the ascites form of murine adenocarcinoma 755. V. Antibody-directed macrophages mediate tumor cell destruction. J. Immunol. 126: 2337.PubMedGoogle Scholar
  50. 51.
    Herlyn, D., Koprowski, H. 1982. Ig2a monoclonal antibody inhibits human tumor cell growth through interaction with effector cells. Proc. Nat. Acad. Sci. USA 79: 4761.PubMedGoogle Scholar
  51. 52.
    Steplewski, Z., Lubeck, M.O., Koprowski, H. 1983. Human macrophages armed with murine immunoglobulin G2a antibodies to tumors destroy human cancer cells. Science 221: 865.PubMedGoogle Scholar
  52. 53.
    Kipps, T.J., Parham, P., Pont, J., Herzenberg, L.A. 1985. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J. Exp. Med. 161: 1.PubMedGoogle Scholar
  53. 54.
    Vogel, S.N., Finbloom, D.S., English, K.E., Rosenstreich, D.L., Langreth, S.G. 1983. Interferon-induced enhancement of macrophage Fc receptor expression [3-interferon treatment of C3H/HeJ macrophages results in increased numbers and density of Fc receptor. J. Immunol. 130: 1210.PubMedGoogle Scholar
  54. 55.
    Rhodes, J. 1975. Macrophage heterogeneity in receptor activity: the activation of macrophage Fc receptor function in vivoand in vitro. J. Immunol. 114: 976.PubMedGoogle Scholar
  55. 56.
    Rhodes, J., Jones, D.H., Bleehen, N.M. 1983. Increased expression of human monocyte HLA-DR antigens and Fcy receptors in response to human interferon in vivo. Clin. Exp. Immunol. 53: 739.Google Scholar
  56. 57.
    Ezekowitz, R.A.B., Gordon, S. 1984. Alterations of surface properties by macrophage activation: expression of receptors for Fc and mannose-terminal glycoproteins and differentiator antigens. Contemp. Top. Immunobiol. 14: 33.Google Scholar
  57. 58.
    Nitta, T., Suzuki, T. 1982. Biochemical signals transmitted by Fcy receptors triggering mechanisms of the increased synthesis of adenosine-3’,5’-cyclic monophosphate mediated by Fcy2a and Fc2b receptors of a murine macrophage-like cell line (P388 D1). J. Immunol. 129: 2708.PubMedGoogle Scholar
  58. 59.
    Young, J.D.-E., Unkeless, J.C., Kaback, R., Cohn, Z.A. 1983. Mouse macrophage Fc receptor for IgGy2b yi in artificial and plasma membrane vesicles functions as a ligand-dependent inophore. Proc. Natl. Acad. Sci. 80: 1636.PubMedGoogle Scholar
  59. 60.
    Johnston, P.A., Adams, D.O., Hamilton, T.A. 1984. Fe-receptor mediated protein phosphorylation in murine peritoneal macrophages. Biochem. Biophys. Res. Commun. 124: 197.Google Scholar
  60. 61.
    Humes, J.L., Sadowski, S., Galavage, M., Goldenberg, M., Subers, E., Bonney, R.J., Kuehl, F.A., Jr. 1982. Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J. Biol. Chem. 257: 1591.PubMedGoogle Scholar
  61. 62.
    Gordon, S., Unkeless, J.C., Cohn, Z.A. 1974. Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis: evidence for a 2 stage process, J. Exp. Med. 140: 995.PubMedGoogle Scholar
  62. 63.
    Melewicz, F.M., Spiegelberg, H.L. 1980. Fc receptors for IgG on a subpopulation of human peripheral blood monocytes. J. Immunol. 125: 1026.PubMedGoogle Scholar
  63. 64.
    Dessaint, J.P.L., Capron, A., Joseph, M., Aurrault, C., Pestel, J. 1983. Macrophage-mediated IgE ADCC to helminth parasites and IgE-dependent macrophage activation. In: Macrophage-mediated Antibody-dependent Cellular Cytotoxicity ( H.S. Koren, ed.), Marcell Dekker, New York, p. 315.Google Scholar
  64. 65.
    Diamond, B., Yelton, D.E. 1981. A new Fc receptor on mouse macrophages binding IgG3. J. Exp. Med. 153: 514.PubMedGoogle Scholar
  65. 66.
    Rabellino, E.M., Ross, G.D., Polley, M.J. 1978. Membrane receptors of mouse leukocytes. I. Two types of complement receptors for different regions of C3. J. Immunol. 120: 871.Google Scholar
  66. 67.
    Rabellino, E.M., Ross, G.D., Trang, H.T.K., Williams, N., Metcalf, D. 1978. Membrane receptors of mouse leukocytes. II. Subsequential expression of membrane receptors and phagocytic capacity during leukocyte differentiation. J. Exp. Med. 147: 434.PubMedGoogle Scholar
  67. 68.
    Springer, T.A., Unkeless, J.C. 1984. Analysis of macrophage differentiation and function with monoclonal antibodies. Contemp. Top. Immunobiol. 14: I.Google Scholar
  68. 69.
    Hartung, H.P., Hadding, U. 1983. Synthesis of complement by macrophages and modulation of their functions through complement activation. Springer Semin. Immunopathol. 6: 283.Google Scholar
  69. 70.
    Ross, G.D., Medof, M.E. 1985. Membrane complement receptors specific for bound fragments of C3. Adv. Immunol. 37: 217.Google Scholar
  70. 71.
    Beller, D.I., Springer, T.A., Schreiber, R.D. 1982. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J. Exp. Med. 156: 1000.PubMedGoogle Scholar
  71. 72.
    Aderem, A.A., Wright, S.D., Silverstein, S.C., Cohn, Z.A. 1985. Ligated C1 receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J. Exp. Med. 161: 617.PubMedGoogle Scholar
  72. 73.
    Yamamoto, K., Johnston, R.B. 1984. Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J. Exp. Med. 159: 405.PubMedGoogle Scholar
  73. 74.
    Griffin, F.M., Jr., and Mullinex, P.J. 1981. Augmantation of macrophage-complement receptor function in vitro. III. C3b receptors that promote phagocytosis migrate within the plane of the macrophage plasma membrane. J. Exp. Med. 154: 291.PubMedGoogle Scholar
  74. 75.
    Griffin, F.M. 1984. Activation of macrophage complement receptors for phagocytosis. Contemp. Top. Immunobiol. 14: 57.Google Scholar
  75. 76.
    Wright, S.D., Silverstein, S.C. 1982. Tumor-promoting phorbol esters stimulate C3b and C3bi receptor-mediated phagocytosis in cultured human monocyte. J. Exp. Med. 156: 1149.PubMedGoogle Scholar
  76. 77.
    Stahl, P., Schlesinger, P., Rodman, J.S., Doebber, T. 1976. Recognition of lysosomal glycosidases in vivoinhibited by modified glycoproteins. Nature 264: 86.PubMedGoogle Scholar
  77. 78.
    Imber, M., Pizzo, S.V., Johnson, W.J., Adams, D.O. 1982. Selective diminution of the binding of mannose by murine macrophages in the latter activation. J. Biol. Chem. 257: 5129.PubMedGoogle Scholar
  78. 79.
    Stahl, P., Gordon, S. 1982. Expression of a mannose-fucosyl receptor for endocytosis on cultured primary macrophages and then hybrids. J. Cell. Biol. 93: 49.PubMedGoogle Scholar
  79. 80.
    Sung, S-S.T., Nelson, R.S., Silverstein, S.C. 1983. Yeast mannans inhibit binding and phagocytosis of zymosan bymouse peritoneal macrophages. J. Cell Biol. 95: 160.Google Scholar
  80. 81.
    Ezekowitz, R.A.B., Gordon, S. 1982. Down-regulation of mannosyl receptor-mediated endocytosis and antigen F4/80 in bacillus calmette-guerin activated mouse macrophages. Role of T lymphocytes and lymphokines. J. Exp. Med. 155: 1623.PubMedGoogle Scholar
  81. 82.
    Kolb-Bachofen, V., Schlepper-Schafer, J., Vogell, W., Kolb, H. 1982. Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells: localization of lectinmediated endocytosis. Cell 29: 859.PubMedGoogle Scholar
  82. 83.
    Benacerraf, B., Germain; R.N. 1978. The immune response genes of the major histocompatibility complex. Immunol. Rev. 38: 70.Google Scholar
  83. 84.
    Zeigler, K., Unanue, E.R. 1979. The specific binding of Listeria monocytogenes immune T lymphocytes to macrophages. I. Quantitation and role of H-2 gene products. J. Exp. Med. 150: 1143.Google Scholar
  84. 85.
    Rosenthal, A.S. 1978. Selection and macrophage function in genetic control of the immune response. Immunol. Rev. 40: 136.Google Scholar
  85. 86.
    Actuo, O., Reinherz, F.L. 1984. The human T cell receptor-structure and function. N. Eng. J. Med. 312: 1100.Google Scholar
  86. 87.
    Beller, D.I., Kiely, J.M., Unanue, E.R. 1980. Regulation of macrophage populations. I. Preferential induction of Ia rich peritoneal exudatie by immunologic stimuli. J. Immunol. 124: 1426.PubMedGoogle Scholar
  87. 88.
    Beller, D.I., Unanue, E.R. 1981. Regulation of macrophage populations. II. Synthesis and expression of la antigens by peritoneal exudate macrophages is a transient event. J. Immunol. 126: 263.PubMedGoogle Scholar
  88. 89.
    Beller, D.I., Unanue, E.R. 1982. Reciprocal regulation of macrophage and T cell function by way of soluble mediators. Lymphokines 6: 25.Google Scholar
  89. 90.
    Cowing, C., Schwartz, B.D., Dickler, H.B. 1978. Macrophage Ia antigens: I. Macrophage populations differ in their expression of Ia antigens. J. Immunol. 120: 378.PubMedGoogle Scholar
  90. 91.
    Marino, P.A., Adams, D.O. 1980. Interaction of bacillus calmette-guerin-activated macrophages and neoplastic cells in vitro. I. Conditions of binding and its selectivity. Cell Immunol. 54: 11.PubMedGoogle Scholar
  91. 92.
    Somers, S.D., Mastin, P.A., Adams, D.O. 1983. The binding of tumor cells by murine mononuclear phagocytes can be divided into two, qualitatively distinct types, J. Immunol. 131: 2086.PubMedGoogle Scholar
  92. 93.
    Marino, P.A., Whisnant, C.C., Adams, D.O. 1981. The binding of BCG-activated macrophages to tumor targets: selective inhibition by membrane preparations from homologous and heterologous neoplastic cells. J. Exp. Med. 154: 77.PubMedGoogle Scholar
  93. 94.
    Johnson, W.J., Whisnant, C., Adams, D.O. 1981. The binding of BCG-activated macrophages to tumor targets stimulates secretion of cytolytic factor. J. Immunol. 127: 1787.PubMedGoogle Scholar
  94. 95.
    Brown, M.S., Goldstein, J.L. 1983. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in altherosclerosis. Ann. Rev. Biochem. 52: 223.PubMedGoogle Scholar
  95. 96.
    Johnson, W.J., Pizzo, S.V., Imber, M.J., Adams, D.O. 1982. Receptors for maleylated proteins regulate the secretion of neutral proteases by murine macrophages. Science 218: 574.PubMedGoogle Scholar
  96. 97.
    Fogelman, A.M., Haverland, M.E., Edwards, P.A. 1984. Low density lipoprotein receptor and scavenger receptors on monocytes and macrophages-modulation by lymphokine. Lymphokines 9: 363.Google Scholar
  97. 98.
    Nathan, C.F., Silverstein, S.C., Brukner, L.H., Cohn, Z.A. 1979. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med. 149: 100.PubMedGoogle Scholar
  98. 99.
    Adams, D.O., Johnson, W.J., Fiorito, E., Nathan, C.F. 1981. H2O2 and CF can interact synergistically in effecting cytolysis of neoplastic targets. J. Immunol. 127: 1973.PubMedGoogle Scholar
  99. 100.
    Schlager, S.I., Ohanian, S.H., Boros, T. 1978. Correlation between the ability of tumor cells to resist humoral immune attack and their ability to synthesize lipid. J. Immunol. 120: 463.PubMedGoogle Scholar
  100. 101.
    Schlager, Si, Ohanian, S.H., Boros, T. 1978. Identification of lipids synthesized and released by tumor cells under attack by antibody and complement. J. Immunol. 120: 1644.PubMedGoogle Scholar
  101. 102.
    Johnston, R.B., Godzik, C.A., Cohn, Z.A. 1978. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J. Exp. Med. 148: 115.PubMedGoogle Scholar
  102. 103.
    Nathan, C.F., Root, R.K. 1977. Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering. J. Exp. Med. 146: 1648.PubMedGoogle Scholar
  103. 104.
    Szuro-Sudol, A., Murray, H.W., Nathan, C.F. 1982. Suppression of macrophage antimicrobial activity by a tumor cell product. J. Immunol. 131: 384.Google Scholar
  104. 105.
    Suzo-Sudol, A., Nathan, C.F. 1982. Suppression of macrophage oxidative metabolism by products of malignant and non-malignant cells. J. Exp. Med. 156: 945.Google Scholar
  105. 106.
    Bonney, R.J., Davies, P. 1984. Possible autoregulatory functions of the secretory products of mononuclear phagocytes. Contemp. Top. Immunobiol. 14: 199.Google Scholar
  106. 107.
    Adams, D.O. 1980. Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J. Immunol. 124: 286.PubMedGoogle Scholar
  107. 108.
    Adams, D.O., Kao, K.-J., Farb, R., Pizzo, S.V. 1980. Effector mechanisms of cytolytically activated macrophages. II. Secretion of a tumor-selective cytolytic factor by activated macrophage and its relationship to secreted neutral proteases. J. Immunol. 124: 293.PubMedGoogle Scholar
  108. 109.
    Adams, D.O., Johnson, W., Marino, P.A. 1982. Mechanisms of target recognition and destruction in macrophage-mediated tumor cytotoxicity. Fed. Proc. 41: 115.Google Scholar
  109. 110.
    Wright, S.D., Silverstein, S.C. 1984. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature 309: 359.PubMedGoogle Scholar
  110. 111.
    Podack, E.R. 1985. The molecular mechanism of lymphocyte-mediated tumor cell lysis. Immunol. Today 6: 21.Google Scholar
  111. 112.
    Henkart, P.A., Millard, P.J., Reynolds, G.W., Henkart, M.P. 1984. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J. Exp. Med. 160: 75.PubMedGoogle Scholar
  112. 113.
    Adams, D.O., Nathan, C.F. 1983. Molecular mechanisms operative in cytolysis of tumor cells by activated macrophages. Immunol. Today 4: 166.Google Scholar
  113. 114.
    Granger, D.L., Taintor, R.R., Cook, J.L., Hibbs, J.B., Jr. 1980. Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondiral respiration. J. Clin. Invest. 65: 357.PubMedGoogle Scholar
  114. 115.
    Kaplan, A.M., Brown, J., Collins, J.M., Morahan, P S, Snodgrass, M.J. 1978. Mechanism of macrophage-mediated tumor cell cytotoxicity. J. Immunol. 121: 1781.PubMedGoogle Scholar
  115. 116.
    Johnson, W.J., Somers, S.D., Adams, D.O. 1984. Activation of macrophages for tumor cytotoxicity. In: Contemporary Topics in Immunobiology, (Adams, D.O. and Hanna, M.G., eds.),`Plenum Press, New York, pp. 127–146.Google Scholar
  116. 117.
    Johnson, W.J., Weiel, J.E., Adams, D.O. 1982. The relationship between secretion of a novel cytolytic protease and macrophage-mediated tumor cytotoxicity. In: Natural Cell-Mediated Immunity. II., (Herberman, R., ed.), Academic Press, New York, pp. 949–954.Google Scholar
  117. 118.
    Johnson, W.J., Goldfarb, R.H., Van Dyke-Phillips, V., Adams, D.O. 1985. Secretion of a novel cytolytic protease by activated murine macrophages: its properties and role in tumor cytolysis. Lymphokines 11 (in press).Google Scholar
  118. 119.
    Currie, G.A., Basham, C. 1975. Activated macrophages release a factor which lyses malignant cells but not normal cells. J. Exp. Med. 142: 1600.PubMedGoogle Scholar
  119. 120.
    Sharma, S.D., Piessens, W.F., Middlebrook, G. 1980. In vitro killing of tumor cells by soluble products of activated guinea pig peritoneal macrophages. Cell. Immunol. 49: 379.PubMedGoogle Scholar
  120. 121.
    Reidarson, T., Levy, W., Klostergaard, J., Granger, G.A. 1982. Inducible macrophage cytotoxins. I. Biokinetics of activation and release in vitro. Tumor lysis mechanisms involving target cell-binding proteases. J. Natl. Cancer Inst. 69: 879.Google Scholar
  121. 122.
    Reidarson, T., Granger, G.A., Klostergaard, J. 1982. Inducible macrophage cytotoxins. II. J. Natl. Cancer Inst. 69: 889.PubMedGoogle Scholar
  122. 123.
    Klostergaard, J., Reidarson, T., Granger, G.A. 1984. Purification of murine macrophage cytotoxin. J. Leuko. Biol. 35: 229.PubMedGoogle Scholar
  123. 124.
    Destafano, J., Beck, G., Lane, B., Zucker, S. 1982. Role of tumor cell membrane-bound serine proteases in tumor-induced target cytolysis. Cancer Res. 42: 207.Google Scholar
  124. 125.
    Chapman, H.A., Vavrin, Z., Hibbs, J.B. 1982. Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell 28: 653.PubMedGoogle Scholar
  125. 126.
    Zucker-Franklin, D., Laurie, G., Franklein, E.C. 1981. Demonstration of membrane-bound proteolytic activity on the surface of mononuclear leukocytes. J. Histochem. Cytochem. 29: 451.PubMedGoogle Scholar
  126. 127.
    Kilborn, R.G., Klostergaard, J., Lopez-Brestein, G. 1984. Activated macrophages secrete a soluble factor that inhibits mitochondrial respiration of tumor cells. J. Immunol. 133: 2597.Google Scholar
  127. 128.
    Nathan, C.F. 1982. Secretion of oxygen intermediates: role in effector functions of activated macrophages. Fed. Proc. 41: 2206.Google Scholar
  128. 129.
    Nathan, C.F., Brukner, L.H., Silverstein, S.C., Cohn, Z.A. 1979. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacological triggering of effector cells and the release of hydrogen peroxide. J. Exp. Med. 149: 84.Google Scholar
  129. 130.
    Johnston, P.A., Adams, D.O., Hamilton, T.A. 1985. Regulation of Fc-mediated respiratory burst: long term treatment of murine macrophages with LPS selectively inhibits immune-complex stimulated secretion of H2O2. J. Immunol. 135: 513.PubMedGoogle Scholar
  130. Silverstein, S.C., Michl, J., Nathan, C.F., Horowitz, M. 1980. In: Basic and Clinical Aspects of Granulomatous Diseases, (Boros, D.L. and Yoshida, T., eds.), Elsevier, New York, p. 67.Google Scholar
  131. 132.
    Trol, W. Witz, G., Goldstein, B., Stone, D., Sugimura, T. 1982. The role of free oxygen radicals in tumor promotion and carcinogenesis. Carcinogenesis 7: 593.Google Scholar
  132. 133.
    Spragg, R.G., Hyshop, P.A., Schraufstatter, LU., Hinshaw, D.B., Cochrane, C.G. 1985. Oxidant injury of cultured cells results in rapid decreases in intracellular ATP. Fed. Proc. (Abstr.) 44: 1125.Google Scholar
  133. 134.
    Schraufstatter, I., Hinshaw, D., Hyslop, P., Spragg, R., Cochrane, C. 1985. ADP-ribosylation in cellular oxidant injury. Fed. Proc. (Abstr.) 44: 1125.Google Scholar
  134. Lewis, J.G., Adams, D.O. 1984. Induction of 5,6 saturated thymine bases in NIH-3T3 cells by TPA-stimulated macrophages: role of reactive oxygen intermediates. Manuscript submitted.Google Scholar
  135. 136.
    Carswell, E.A., Old, L.J., Kassel, L. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. 72: 3666.PubMedGoogle Scholar
  136. 137.
    Green, S., Dobijansky, A., Carswell, E.A., Kassel, R.L., Oed, L.J., Fiore, N., Schwartz, M.K. 1976. Partial purification of a serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. 73: 381.PubMedGoogle Scholar
  137. 138.
    Ruff, M.R., Gifford, G.E. 1980. Purification and physio-chemical characterization of rabbit tumor necrosis factor. J. Immunol. 125: 1671.PubMedGoogle Scholar
  138. 139.
    Matthews, N., Ryley, H.C., Neale, M.L. 1980. Tumor necrosis factor from the rabbit. IV. Purification and chemical characterization. Br. J. Cancer 42: 416.PubMedGoogle Scholar
  139. 140.
    Kull, F.C., Cuatrecasas, P. 1981. Preliminary characterization of the tumor cell cytotoxin in tumor necrosis serum. J. Immunol. 126: 1279PubMedGoogle Scholar
  140. 141.
    Pennica, D., Nedwin, G.E., Hayflich, J.S., Seeberg, P.H., Derynch, R., Palladino, M.A., Kohr, W.J., Aggarwal, B.B., Goeddel, D.V. 1984. Human tumor necrosis factor: percursor structure, expression and homology to lymphotoxin. Nature 312: 724.PubMedGoogle Scholar
  141. 142.
    Heise, E.R., Weiser, R.S. 1969. Factors in delayed sensitivity: lymphocyte and macrophage cytotoxins in the tuberculin reaction. J. Immunol. 103: 570.PubMedGoogle Scholar
  142. 143.
    Kramer, J.J., Granger, G.A. 1972. The in vitroinduction and release of a cell toxin by immune C57BL/6 mouse peritoneal macrophages. Cell. Immunol. 3: 88.Google Scholar
  143. 144.
    Reed, W.P., Lucas, Z.J. 1975. Cytotoxic activity of lymphocytes. V. Role of soluble toxin in macrophage-inhibited cultures of tumor cells. J. Immunol. 115: 395.PubMedGoogle Scholar
  144. 145.
    Matthews, N. 1981. Production of an anti-tumor cytotoxin by human monocytes. Immunol. 44: 135.Google Scholar
  145. 146.
    Drysdale, B.-E., Zacharchutz, C.M., Shin, H.S. 1983. Mechanism of macrophage-mediated cytotoxicity: production of a soluble factor. J. Immunol. 131: 2362.PubMedGoogle Scholar
  146. 147.
    Kull, F.C., Cuatrecasas, P. 1984. Necrosin: purification and properties of a cytoxin derived from murine macrophage-like cell line. Proc. Natl. Acad. Sci. 81: 7932.PubMedGoogle Scholar
  147. 148.
    Mannel, D.N., Falk, W., Meltzer, M.S. 1981. Inhibition of non-specific tumoricidal activity by activated macrophages with antisera against a soluble cytotoxic factor. Infect. Immun. 33: 156.Google Scholar
  148. 149.
    Matthews, N. 1983. Effect on human monocyte killing of tumor cells of antibody raised against an extracellular monocyte cytotoxin. Immunol. 48: 321.Google Scholar
  149. 150.
    Gray, P.W., Aggarwal, B.B., Benton, L.V., Bringman, T.S., Hinzel, W.J., Jarrett, J.A., Leung, D.W., Moffat, B., Ng, P., Svedersky, L.P., Palladino, M.A., Nedwin, G.E. 1984. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature 312: 721.PubMedGoogle Scholar
  150. 151.
    Currie, G.A. 1978. Activated macrophages kill tumor cells by releasing arginase. Nature 273: 758.PubMedGoogle Scholar
  151. 152.
    Currie, G.A., Basham, C. 1978. Differential anginase dependence and the selective cytotoxic effecfs of activated macrophages for malignant cells in vitro. Br. J. Cancer 38: 653.PubMedGoogle Scholar
  152. 153.
    Kung, J.T., Brooks, S.B., Jakway, J.P., Leonard, L.L., Talmage, D.W. 1977. Suppression of in vitrocytotoxic response by macrophages due to induced arginase. J. Exp. Med. 146: 665.PubMedGoogle Scholar
  153. 154.
    Fishman, M. 1980. Functional heterogeneity among peritoneal macrophages. III. No evidence for the role of arginase in the inhibition of tumor cell growth by supernatant from macrophages or macrophage subpopulation cultures. Cell. Immunol. 55: 174.Google Scholar
  154. 155.
    Stadecker, M.J., Calderon, J., Karnovsky, M.L., Unanue, E.R. 1977. Synthesis and release of thymidine by macrophages J. Immunol. 119: 1738.PubMedGoogle Scholar
  155. 156.
    Stadecker, M.J., Unanue, E.R. 1979. The regulation of thymidine secretion by macrophages. J. Immunol. 123: 568.PubMedGoogle Scholar
  156. 157.
    Mackaness, G.B. 1969. The influence of immunologically committed lymphoid cells of macrophage activity in vivo. J. Exp. Med. 129: 973.PubMedGoogle Scholar
  157. 158.
    Mackaness, G.B. 1972. The mechanism of macrophage activation. In: Infectious Agents and Host Reactions, ( Mudd, S., ed.), Saunders, Philadelphia, Pa., p. 61.Google Scholar
  158. 159.
    Hibbs, J.B., Lambert, L.H., Remington, J.S. 1971. Resistance to murine tumor conferred by chronic infection with intracellular protozoa Toxoplasma gondii and Besnoctia jellisoni. J. Infect. Dis. 124: 587.PubMedGoogle Scholar
  159. 160.
    Hibbs, J.B., Lambvert, L.H., Remington, J.S. 1972. Adjunant induced resistance to tumor development in mice. Proc. Soc. Exp. Bio. Med. 139: 1053.Google Scholar
  160. 161.
    Alexander, P., Evans, R. 1971. Endotoxin and double stranded RNA render macrophages cytotoxic. Nature New Biology 232: 75.Google Scholar
  161. 162.
    Cleveland, R.P., Meltzer, M.S., Zbar, B. 1974. Tumor cytotoxicity in vitroby macrophages from mice infected with Mycobacterium bovis strain BCG. J. Natl. Cancer Inst. 52: 1887.PubMedGoogle Scholar
  162. 163.
    Hibbs, J.B. 1974. Disvrimination between neoplastic and non-neoplastic cells in vitroby activated macrophages. J. Natl. Cancer Inst. 53: 1487.PubMedGoogle Scholar
  163. 164.
    Hibbs, J.B., Jr. 1974. Heterocytolysis by macrophages activated by bacillus calmette-guerin: lysosome exocytosis into tumor cells. Science 184: 468.PubMedGoogle Scholar
  164. 165.
    Hibbs, J.B., Jr., Chapman, H.A., Jr., Weinberg, J.B. 1978. The macrophage as an antineoplastic surveillance cell: biological perspectives. J. Reticuloendothel. Soc. 24: 549.PubMedGoogle Scholar
  165. 166.
    Meltzer, M.S., Stevenson, M.M. 1977. Macrophage function in tumor-bearing mice: tumoricidal function and chemotactic responses of macrophages activated by infection with Mycobacterium Bovis, strain BCG. J. Immunol. 118: 2176.PubMedGoogle Scholar
  166. 167.
    Meltzer, M.S. 1981. Macrophage activation for tumor cytotoxicity: characterization of priming and trigger signals during lymphokine activation. J. Immunol. 127: 179.PubMedGoogle Scholar
  167. 168.
    Meltzer, M.S. 1981. Tumoricidal cytotoxicity by lymphokine-activated macrophages: development of macrophage tumoricidal activity requires a sequence of reaction. Lymphokines 3: 319.Google Scholar
  168. 169.
    Meltzer, M.S., Ruco, L.P., Boraschi, D., Nacy, C.A. 1979. Macrophage activation for tumor cytotoxicity: analysis of intermediary reactions. J. Reticuloendothel. Soc. 26: 403.PubMedGoogle Scholar
  169. 170.
    Hibbs, J.B., Lambert, L.H., Remington, J.S. 1972. Possible role of macrophage-mediated nonspecific cytotoxicity in tumor resistance. Nature New Biol. 235: 48.PubMedGoogle Scholar
  170. 171.
    Doe, W.F., Yang, S.T., Morrison, D.C., Betz, S.J., Henson, P.M. 1979. Macrophage stimulation by bacterial lipopolysaccharides. II. Evidence for differentiation signals delivered by Lipid A and by a protein-rich fraction of lipopolysaccharides. J. Exp. Med. 148: 557.Google Scholar
  171. 172.
    Johnson, W.J., Marino, P.A., Schreiber, R.D., Adams, D.O. 1983. Sequential activation of murine mononuclear phagocytes for tumor cytolysis: differential expression of markers by macrophages in the several stages of development. J. Immunol. 131: 1038.PubMedGoogle Scholar
  172. 173.
    Ruco, L.P., Meltzer, M.S. 1978. Macrophage activation for tumor cytotoxicity: develop-ment of macrophage cytotoxic activity requires completion of a sequence of short-lived intermediary reactions. J. Immunol. 121: 2035.PubMedGoogle Scholar
  173. 174.
    Soberman, R.J., Karnovsky, M.L. 1981. Biochemical properties of activated macrophages. Lymphokines 3; 11.Google Scholar
  174. 175.
    Cohn, Z.A. 1978. The activation of mononuclear phagocytes: fact, fancy, and future. J. Immunol. 121: 813.PubMedGoogle Scholar
  175. 176.
    Schreiber, R.D., Pace, J.L., Russell, S.W., Altman, A., Katz, D.H. 1983. Macrophage activating factor produced by a T cell hybridoma: physicochemical and biosynthetic resemblance to 7-interferon. J. Immunol. 131: 826.PubMedGoogle Scholar
  176. 177.
    Adams, D.O., Marino, P. 1984. Activation of mononuclear phagocytes for destruction of tumor cells as a model for study of macrophage development. In: Contemporary Topics in Hematology-Oncology, Vol. III, ( Gordon, A.S., Silber, R., LoBue, J., eds.), Plenum Publishing Corp., NY, pp. 69–136.Google Scholar
  177. 178.
    Hibbs, J.B. 1973. Activated macrophage nonimmunologic recognition: target cell factors related to contact inhibition. Science 180: 868.PubMedGoogle Scholar
  178. 179.
    Meltzer, M.S., Tucker, R.W., Breuer, A.C. 1975. Interaction of BCG-activated macrophages with neoplastic and non-neoplastic cell lines in vitro: cine-micrographic analysis. Cell. Immunol. 17: 30.Google Scholar
  179. 180.
    Piessens, W.F. 1978. Increased binding of tumor cells by macrophages activated in vitrowith lymphocyte mediators. Cell. Immunol. 35: 303.Google Scholar
  180. 181.
    Hamilton, T.A., Fishman, M. 1981. Characterization of the recognition of target cells sensitive or resistant to cytolysis by activated rat peritoneal macrophages. J. Immunol. 127: 1702.PubMedGoogle Scholar
  181. 182.
    Somers, S.D., Whisnant, C.C., Adams, D.O. 1985. Manuscript in preparation.Google Scholar
  182. 183.
    Hamilton, T.A., Becton, D.A., Somers, S.D., Gray, P.W., Adams, D.O. 1985. Interferon gamma modulates protein kinase C activity in murine peritoneal macrophages. J. Biol. Chem. 260: 1378.PubMedGoogle Scholar
  183. 184.
    Blumberg, P.M. 1980. In vitro studies on the mode of action of the phorbol esters, potent tumor,promoters. CRC Crit. Reviews Toxicol. 8: 153.Google Scholar
  184. 185.
    Somers, S.D., Adams, D.O. 1985. Manuscript in preparation.Google Scholar
  185. 186.
    Straussman, G., Springer, T., Adams, D.O. 1985. Manuscript in preparation.Google Scholar
  186. 187.
    Straussman, G., Springer, T.A., Somers, S.D., Adams, D.O. 1985. Unpublished observations.Google Scholar
  187. 188.
    Springer, T.A., Davignon, D., Ho, M.K., Kurzinger, K., Mantz, E., Sanchez-Madrid, F. 1982. LFA-1 and LY + 2,3, molecules associated with T-lymphocyte-mediated killing; and Mac-1, and LFA-1 homologue associated with complement receptor functions. Immunol. Rev. 68: 111.Google Scholar
  188. 189.
    Adams, D.O., Johnson, W.J., Marino, P.A., Dean, J.H. 1983. Pyran copolymer induces incomplete activation of murine macrophages: analysis by use of objective markers that characterize the stages of activation. Cancer Research 43: 3633.PubMedGoogle Scholar
  189. 190.
    Adams, D.O., Marino, P.A., Meltzer, M.S. 1981. Characterization of genetic deficits in macrophage tumoricidal capacity: identification of murine strains with abnormalities in secretion of cytolytic factor and ability to bind neoplastic targets. J. Immunol. 126: 1843.PubMedGoogle Scholar
  190. 191.
    Sorrell, T.C., Lehrer, R.I., Cline, M.J. 1978. Mechanism of nonspecific macrophage-mediated cytotocity: evidence for lack of dependence on oxygen. J. Immunol. 120: 347.PubMedGoogle Scholar
  191. 192.
    Freedman, V.H., Gorrell, T.E., Nathan, C.F., Copeland, C.S., Silverstein, S.C. 1984. Bacillus calmette-guerin-activated murine macrophage kill syngeneic melanoma cells under strict anaerobic conditions. J. Exp. Med. 160: 94.PubMedGoogle Scholar
  192. 193.
    Nathan, C.F., Murray, H.W., Wiebe, M.E., Rubin, B.Y. 1983. Identification of interferon 7 as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158: 670.PubMedGoogle Scholar
  193. 194.
    Takemura, R., Werb, S. 1984. Secretory products of macrophages and their physiological functions. Am. J. Physiol. 15: 1.Google Scholar
  194. 195.
    Rinehart, J.J., Vesalla, R., Lange, P., Kaplan, M.E., Gormus, B.J. 1979. Characterization and comparison of human monocyte-and macrophage-induced tumor cytotoxicity. J. Lab. Clin. Med. 93: 361.PubMedGoogle Scholar
  195. 196.
    Horwitz, D.A., Knight, N., Temple, A., Allison, A.C. 1979. Spontaneous and induced cytotoxic properties of human adherent mononuclear cells: killing of non-sensitized and antibody-coated non-erythroid cells. Immunology 36: 221.PubMedGoogle Scholar
  196. 197.
    Mantovani, A., Jerrells, T.R., Dean, J.H., Herberman, R.B. 1978. Cytolytic and cytostatic activity on tumor cells by circulating human monocytes. Int. J. Cancer 23: 18.Google Scholar
  197. 198.
    Kleinerman, E., Herberman, R.B. 1984. Tumoricidal activity of human monocytes: evidence for cytolytic function distinct from that of NK cells. J. Immunol. 133: 4.PubMedGoogle Scholar
  198. 199.
    Weinberg, J.B., Haney, A.F. 1983. Spontaneous tumor cell killing by human blood monocytes and human peritoneal macrophages: lack of alteration by endotoxin or quenchers of reactive oxygen species. J. Natl. Cancer Inst. 70: 1005.PubMedGoogle Scholar
  199. 200.
    Freundlich, B., Trinchieri, G., Perussia, B., Zurier, R.B. 1983. Cytotoxic effector cells from human peripheral blood adherent cells. Fed. Proc. 42: 3884.Google Scholar
  200. 201.
    Horwitz, D.A., Linker-Israeli, A.M., Bakke, A.C., Nishiya, K. 1983. Interferon enhances NK cell activity but not spntaneous cytotoxicity by monocytes. Fed. Proc. 42: 5424.Google Scholar
  201. 202.
    Kaplan, G. 1983. In vitrodifferentiation of human monocytes. J. Exp. Med. 156: 2063.Google Scholar
  202. 203.
    Becker, S., Reilly, M. 1984. Tumor cytotoxic and growth stimulatory activities mediated by monocytes and peritoneal macrophages. J. Leuko. Biol. 36: 664 (Abst.).Google Scholar
  203. 204.
    Fidler, I.J., Kleinerman, E. 1984. Lymphokine-activated human blood monocytes destroy tumor cells but not normal cells under co-cultivation conditons. J. Clin. Incol. 2: 937.Google Scholar
  204. 205.
    Fischer, D.G., Golightly, M.G., Koren, H.S. 1983. Potentiation of the cytolytic activity of peripheral blood monocytes by lymphokine and interferon. J. Immunol. 130: 1220.PubMedGoogle Scholar
  205. 206.
    Dean, R.T., Virelizier, J.-L. 1983. Interferon as a macrophage activating factor. I. Enhancement of cytotoxicity by fresh and matured human monocytes in the absence of other soluble signals. Clin. Exp. Immunol. 51: 501.Google Scholar
  206. 207.
    Le,J., Prensky, W., Yip, Y.K., Chang, Z., Hoffman, T., Stevenson, H.C., Balays, I., Sadlik, J.R., Vilcek, J. 1983. Activation of human monocyte cytotoxicity by natural and recombinant immune interferon. J. Immunol. 131: 2821.Google Scholar
  207. 208.
    Sone, S., Mutsuuna, S., Ogawara, M., Tsubura, E. 1984. Potentiating effect of muramyl dipeptide and its lipophilic analog encapsulated in liposomes on tumor cell killing by human monocytes. J. Immunol. 132: 2105.PubMedGoogle Scholar
  208. 209.
    Golightly, M.G., Fischer, D.G., Ohlander, C., Koren, H.S. 1983. Characreristics and requirements of the interaction between human monocytes and tumor cells on the single cell level. Blood 61: 390.PubMedGoogle Scholar
  209. 210.
    Koren, H.S., Ohlander, C., Muse, K.E. 1982. Spontaneous killing by human monocytes: a functional and morphological analysis. In: Human Cancer Immunology, ( Serrow B., ed.), Elsevier, North Holland Biomedical, Amsterdam.Google Scholar
  210. 211.
    Sore, S., Lopez-Berestein, G., Fidler, I. 1985. Kinetics and function of tumor cytotoxic factor(s) produced by human blood monocytes activated to the tumoricidal state. J. Natl. Cancer Inst. 74: 583.Google Scholar
  211. 212.
    Argov, S., Chen, A.R., McKinnon, K.P., Koren, H.S. 1984. Cytolytic cell free supernatants from human monocytes. J. Leuk. Biol. 36: 670 (Abst.).Google Scholar
  212. 213.
    Mavier, P., Edgington, T.S. 1984. Human monocyte mediated tumor cytotoxicity. I. Demonstration of an oxygen-dependent myeloperoxidase-independent mechanism. J. Immunol. 132: 1980.PubMedGoogle Scholar
  213. 214.
    Bersani, L., Colotta, F., Poli, G., Mantovani, A. 1984. Mechanism of killing of actinomycin D treated WEHI 164 tumor cells by human peripheral blood monocytes. J. Leuk. Biol. 36: 671 (Abst.).Google Scholar
  214. 215.
    Andreesen, R., Osterholz, J., Bross, K.J., Schulz, A., Luckenbach, G.A., Löhn, G.W. 1983. Cytotoxic effector cell function at different stages of human monocyte-macrophage maturation. Cancer Res. 43: 5931.PubMedGoogle Scholar
  215. 216.
    Jett, J.R., Mantovani, A., Herberman, R.B. 1980. Augmentation of human monocyte-mediated cytolysis by interferon. Cell. Immunol. 54: 425.Google Scholar
  216. 217.
    Biondi, A., Peri, G., Lorenzet, R., Fumarola, D., Mantovani, A. 1983. Role of endotoxin in the expression of human monocyte cytotoxicity. J.R.E.S. 33: 315.Google Scholar
  217. 218.
    Cameron, D.J., Churchill, W.H. 1980. Cytotoxicity of human macrophages for tumor cells: enhancement by bacterial lipopolysaccharides. J. Immunol. 124: 708.PubMedGoogle Scholar
  218. 219.
    Koff, W.C., Fidler, I.J., Showalter, S.D., Chakrabarty, M.K., Hamper, B., Ceccorulli, L.M., Kleinerman, E.S. 1984. Human monocytes activated by immunomodulators in liposomes lyse herpesvirus-infected cells but not normal cells. Sci. 224: 1007.Google Scholar
  219. 220.
    Pabst, M.J., Johnston, R.B. 1980. Increased production of superoxide anion by macrophages exposed in vitroto muramyl dipeptide or lipopolysaccharide. J. Exp. Med. 151: 101.PubMedGoogle Scholar
  220. 221.
    Pabst, M.J., Hedegard, H.B., Johnston, R.B. 1982. Cultured human monocytes require exposure to bacterial products to maintain an optimal oxygen radial response. J. Immunol. 128: 123.PubMedGoogle Scholar
  221. 222.
    Seto, M., Takahashi, T., Nakamura, S., Matsudaira, Y., Nishizuka, Y. 1983. In vivo antitumor effects of monoclonal antibodies with different immunoglobulin classes. Cancer Res. 43:4768.PubMedGoogle Scholar
  222. 223.
    Steplewski, Z., Herlyn, D., Maul, G., Koprowski, H. 1982. Hypothesis: macrophages as effector cells or human tumor destruction mediated by monoclonal antibodies. Hybridoma 2: 1.Google Scholar
  223. 224.
    Adams, D.O., Hall, T., Steplewski, Z., Koprowski, H. 1984. Tumors undergoing rejection induced by monoclonal antibodies of the IgG2a isotype contain increased numbers of macrophages activated for a distinctive form of antibody-dependent cytolysis. Proc. Nat. Acad. Sci. USA 81: 3506.PubMedGoogle Scholar
  224. 225.
    Nathan, C., Cohn, Z.A. 1980. Role of oxygen-dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J. Exp. Med. 152: 198.PubMedGoogle Scholar
  225. 226.
    Koren, H.S., Anderson, S.J., Adams, D.O. 1981. Studies on the antibody-dependent cell-mediated cytotoxicity (ADCC) of thioglycollatge-stimulated and BCG-activated peritoneal macrophages. Cell Immunol. 57: 51.PubMedGoogle Scholar
  226. 227.
    Koren, H.S., Meltzer, M.S., Adams, D.O. 1981. The ADCC capcity of macrophages from C3H/HEJ and A/J mice can be augmented by BCG. J. Immunol. 126: 1013.PubMedGoogle Scholar
  227. 228.
    Johnson, W.J., Bolognesi, D., Adams, D.O. 1984. Antibody dependent cytolysis (ADCC) of tumlor cells by activated murine macrophages is a two step process: quantification of target binding and subsequent target lysis. Cell. Immunol. 83: 170.Google Scholar
  228. 229.
    Shaw, D.R., Griffin, F.M., Jr. 1982. Thioglycollate-elicited mouse peritoneal macrophages are less efficient than resident macrophages in antibody-dependent cell-mediated cytolysis. J. Immunol. 128: 433.PubMedGoogle Scholar
  229. Johnson, W.J., Steplewski, Z., Matthews, T.J., Hamilton, T.A., Koprowski, H., Adams, D.O. 1985. Cytolytic interactions between murine macrophages, tumor cells and monoclonal antibodies: characterization of lytic conditions and requirements for effector activation. Submitted.Google Scholar
  230. Johnson, W.J., Matthews, T.J., Bolognesi, D.P., Adams, D.O. 1985. Antibody-mediated rejection of a murine adenocarcinoma in vivo: quantification of the number and function of intratumoral macrophages. Submitted.Google Scholar
  231. 232.
    Klassen, D.K., Sagone, A.L. 1980. Evidence for both oxygen and non-oxygen dependent mechanisms of antibody sensitized target cell lysis by human monocytes. Blood 56: 985.PubMedGoogle Scholar
  232. 233.
    Koller, C.A., LoBuglio, A.F. 1981. Monocyte-meidated antibody dependent cell-mendiated cytotoxicity: the role of the metabolic burst. Blood 58: 293.PubMedGoogle Scholar
  233. 234.
    Nathan, C.F. 1983. Reactive oxygen intermediates in lysis of antibody-coated targets. In: Macrophage-Mediated Antibody-Dependent Cellular Cytotoxicity, ( Koren, H.S., ed.), Marcel Dekker, New York, p. 199.Google Scholar
  234. 235.
    Nathan, C.F., Arrick, B.A., Murray, H.W., DeSantis, N.M., Cohn, Z.A. 1981. Tumor cell anti-oxidant defenses inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J. Exp. Med. 153: 766.PubMedGoogle Scholar
  235. 236.
    Arrick, B.A., Nathan, C.F., Griffith, O.W., Cohn, Z.A. 1982. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J. Biol. Chem. 257: 1231.PubMedGoogle Scholar
  236. 237.
    Borregaard, N., Kragballe, K. 1980. Role of oxygen in antibody-dependent cytotoxicity mediated by monocytes and neutrophils. J. Clin. Invest. 66: 677.Google Scholar
  237. 237.
    Borregaard, N., Kragballe, K. 1980. Role of oxygen in antibody-dependent cytotoxicity mediated by monocytes and neutrophils. J. Clin. Invest. 66: 677.Google Scholar
  238. 239.
    Yamazaki, M., et al.1976. Two step mechanism of macrophage-mediated tumor lysis in vitro. Gann 67: 741.PubMedGoogle Scholar
  239. 240.
    Lohmann-Matthes, M.-L., Lang, H., Sun, D. 1982. Macrophages as effector cells. Immunobiol. 161: 401.Google Scholar
  240. 241.
    Shaw, G.M., Levy, P.C., Lobuglio, A.F. 1978. Human monocyte cytotoxicity to tumor cells. I. Antibody-dependent cytotoxicity. J. Immunol. 121: 573.PubMedGoogle Scholar
  241. 242.
    Conkling, P., Klassen, D.K., Sagore, A.L. 1982. Comparison of antibody-dependent cytotoxicity mediated by human polymorphonuclear cells, monocytes and alveolar macrophages. Blood 60: 1282.Google Scholar
  242. 243.
    Conkling, P., Papermaster-Bender, G., Whitcomb, M., Sagore, A.L. 1982. Oxygen dependence of human alveolar macrophage-mediated antibody-dependent cytotoxicity. Infect. Immun. 38: 114.Google Scholar
  243. 244.
    Sein, S., Esperik, T. 1983. Toxic oxygen species in monocyte-mediated antibody-dependent cytotoxicity. JRES 33: 417.Google Scholar
  244. 245.
    Esperik, T., Hammerstrom, J. 1983. Human monocyte-mediated antibody-dependent cytotoxicity to K-562 cells an elelctron microscopic study. Acta Path. Microbiol. Immunol. Scand. 91: 211.Google Scholar
  245. 246.
    Esperik, T. 1985. Human monocyte-mediated lysis of antibody-coated tumor cells: the role of the cytoskeleton in monocytes. J. Immunol. 131: 2017.Google Scholar
  246. 247.
    Sagone, A.L., Rinehart, J.J. 1984. Human monocyte to macrophage differentiation in vitro: characterization and mechanisms of the increased antibody-dependent cytotoxicity with differentiation. J. Leuko. Biol. 35: 217.PubMedGoogle Scholar
  247. 248.
    Stuttman, O. 1980. Immunological surveillance and cancer. In: Handbook of Cancer Immunology (H.A. Walters, Ed.) 7: 1.Google Scholar
  248. 249.
    Fidler, I.J., Poste, G. 1982. Macrophage-mediated destruction of malignant tumor cells and new strategies for the therapy of metastatic disease. Springer Sem. Immunopathol. 5: 161.Google Scholar
  249. 250.
    Oldham, R.K., Thurman, G.B., Talmadge, J.E., Stevenson, H.C., Foon, K.A. 1984. Lymphokines, monoclonal antibodies and other biological response modifiers in the treatment of cancer. Cancer 54 (Suppl.): 2795.PubMedGoogle Scholar
  250. 251.
    Celada, A., Gray, P.W., Rinderkrecht, E., Schreiber, R.D. 1984. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J. Exp. Med. 160: 55.PubMedGoogle Scholar
  251. 252.
    Weiel, J., Adams, D.O., Hamilton, T. 1985. Biochemical models of y-interferon activation: altered expression of transferrin receptors on murine peritoneal macrophages following treatment in vitrowith PMA or A23187. J. Immunol. 134: 293.PubMedGoogle Scholar
  252. 253.
    Somers, S.D., Weiel, J.E., Hamilton, T.A., Adams, D.O. 1985. Phorbol esters and calcium inophore act synergistically to prime murine macrophages for tumoricidal activity. Manuscript submitted.Google Scholar
  253. 254.
    Weiel, J.E., Hamilton, T.A., Adams, D.O. 1985. Stimulation of protein phosphorylation in murine macrophages by bacterial endotoxin. Manuscript submitted.Google Scholar
  254. 255.
    Hamilton, T.A., Jasen, M., Somers, S.D., Adams, D.O. 1985. Stimulation of protein synthesis by bacterial endotoxin in murine macrophages. Submitted.Google Scholar
  255. 256.
    Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693.PubMedGoogle Scholar
  256. 257.
    Davis, R.J., Ganong, B.R., Bell, R.M., Czech, M.P. 1985. Structural requirements for diacylglycerols to mimic tumor-promoting phorbol diester action can epidermal growth factor receptor. J. Biol. Chem. 260: 5315.PubMedGoogle Scholar
  257. 258.
    Schorlemmer, H.U., Allison, A.C. 1976. Effects of activated complement components or enzyme secretion by macrophages. Immunol. 31: 781.Google Scholar
  258. 259.
    Goodman, M.G., Weigle, W.O., Hugli, T.E. 1980. Inability of the C3a anaphylaxatoxin to promote cellular lysis. Nature 283: 78.PubMedGoogle Scholar
  259. 260.
    Osserman, E.F., Klockars, M., Halper, J., Fischel, R.C. 1973. Effects of lysozyme on normal and transformed mammalian cells. Nature 243: 331.PubMedGoogle Scholar
  260. 261.
    Stewart, W.E., Gresser, I., Tovey, M., Bandu, M.T., LeGoff, S. 1976. Identification of the cell multiplication inhibitor factors in interferon preparations as interferon. Nature 262: 300.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston 1986

Authors and Affiliations

  • Scott D. Somers
  • William J. Johnson
  • Dolph O. Adams

There are no affiliations available

Personalised recommendations