Advertisement

Epstein-Barr virus nuclear antigen (EBNA): antigenicity of the molecule encoded by the BamH1 K fragment of the EBV genome

  • M. J. Allday
  • A. J. MacGillivray
Part of the Developments in Medical Virology book series (DIMV, volume 1)

Summary

The major antigenic component of the Epstein-Barr virus nuclear antigen complex (EBNA) is a highly polymorphic (69–94K mol. wt.) polypeptide. Its molecular weight correlates with the size of the large Hind III subfragment of the BamH1 K fragment of the EBV genome which contains the third internal repeat region, IR3.

The region of the molecule encoded by IR3, plus a small number of flanking residues, forms a large peptide fragment which the amino acid sequence predicts is trypsin resistant. Immunoblotting of trypsin digested, partially purified, BamH1 K encoded EBNA (BK EBNA) from various cell lines demonstrates that this region is antigenic and shows it must be an immunogenic determinant in the native molecule. It also confirms that it is responsible for the size polymorphism. Immunoblotting other peptide fragments with a variety of sera show that different epitopes on BK EBNA. The possibility that anti-RANA (Rheumatoid Arthritis Associated Nuclear Antigen) might represent a specific component of anti-EBNA antisera is considered.

Keywords

Nuclear Antigen Repeat Array Native Molecule Immunogenic Determinant Trypsin Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billings, P. B., Hoch, S. O., White, P. J., Carson, D. A. and Vaughn, J. H. Antibodies to the Epstein-Barr virus nuclear antigen and to rheumatiod arthritis nuclear antigen identify the same polypeptide. Proc. Natl. Acad. Sci. USA, 80, 7104–7108 (1983).PubMedCrossRefGoogle Scholar
  2. Croft, L.R. Enzymic cleavage of proteins, in Introduction to Protein Sequence Analysis, published by John Wiley and Sons, Chichester, U.K. (1980).Google Scholar
  3. Burnette, W. N. ‘Western Blotting’:electrophoretic transfer of protein from SDS-polyacrylamide gels to unmodified nitrocelluse and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203 (1981).PubMedCrossRefGoogle Scholar
  4. deKretser, T., Crumpton, M. J., Bodmer, J. G. and Bodmer, W. F. Biochemical analysis of the polymorphism of three HLA-D region antigens. Mol. Biol. Med. 1, 59–76 (1983).Google Scholar
  5. Depper, J.M. and Zvaifler, N.J. The association of Epstein- Barr virus and rheumatoid arthritis, in Gorini, S. (ed), Advances in Inflammation Research, Vol.3, Raven Press, New York, pp. 29–40 (1982).Google Scholar
  6. Dillner, J. Sternas, L., Kallin, B., Alexander, H., Ehlin-Henriksson, B., Jornvall, H., Klein, G. and Lerner, R. Antibodies against a synthetic peptide identify the Epstein-Barr virus determined nuclear antigen (EBNA). Proc. Natl. Acad. Sci. USA. 81, 4652–4656 (1984).PubMedCrossRefGoogle Scholar
  7. Grogan, E. A., Summers, W. P., Dowling, S., Shedd, D., Gradoville, L. and Miller, G. Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology and chromosome binding. Proc. Natl. Acad. Sci. USA, 80, 7650–7653 (1983).PubMedCrossRefGoogle Scholar
  8. Heller, M., Henderson, A. and Kieff, E. Repeat array in Epstein-Barr virus DNA is related to cell DNA sequences interspersed on human chromosomes. Proc. Natl. Acad. Sci. USA, 79, 5916–5920 (1982).PubMedCrossRefGoogle Scholar
  9. Hennessy, K., Heller, M., van Santen, V. and Kieff, E. Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein-Barr nuclear antigen. Science 220, 1396–1398 (1983).PubMedCrossRefGoogle Scholar
  10. Hennessy, K. and Kieff, E. One of two Epstein-Barr virus nuclear antigens contains a glycine-alanine copolymer domain. Proc. Natl. Acad. Sci. USA, 80, 5665–5669 (1983).PubMedCrossRefGoogle Scholar
  11. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  12. Reedman, B. M. and klein, G. Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer 11, 499–520 (1973).PubMedCrossRefGoogle Scholar
  13. Sculley, T. B., Kreofsky, T., Pearson, G. R. and Spelsberg, T. C. Partial purification of the Epstein-Barr virus nuclear antigen(s). J. Biol. Chem. 258, 3974–3982 (1983).PubMedGoogle Scholar
  14. Smith, D. E. and Fisher, P. A. Identification, developmental regulation and responce to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J. Cell. Biol. 99, 20–28 (1984).PubMedCrossRefGoogle Scholar
  15. Snary, D. and Crumpton, M. J. Preparation and properties of lymphocyte plasma membrane. Contemp. Top. Mol. Immunol. 3, 27–56 (1974).PubMedGoogle Scholar
  16. Venables, P. J. W., Smith, P. R. and Maini, R. N. Rheumatoid arthritis, nuclear antigen and Epstein-Barr virus. Arthritis Rheum. 27, 476–477 (1984).CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • M. J. Allday
    • 1
  • A. J. MacGillivray
    • 1
  1. 1.Biochemistry LaboratorySchool of Biological SciencesFalmerUK

Personalised recommendations