An EBV RNA with A Repetitive Spliced Structure

  • M. Bodescot
  • B. Chambraud
  • M. Perricaudet
Part of the Developments in Medical Virology book series (DIMV, volume 1)


We are studying the Epstein-Barr virus genes expressed in the Burkitt’s lymphoma latently infected Raji cells. We describe here a cDNA representing a spliced RNA transcribed rightward from the IR1-U2 region. The cDNA contains several repeats of two exons, 66 and 132 bp, which are transcribed from the IR1 repeats, and four exons transcribed from U2. The longest open reading frame of the cDNA presumably corresponds to the carboxy-terminal 261 amino acids of a polypeptide containing several repeats of a 66 amino acid sequence. Since part of this coding region is deleted in the P3HR-1 non-immortalizing virus, this polypeptide might be involved in the process of growth-transformation of B-lymphocytes.


Burkitt Lymphoma Raji Cell Longe Open Reading Frame PstI Restriction Site Incomplete Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARRAND, J., AND RYMO, L., Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J. Virol., 41, 376–389 (1982).PubMedGoogle Scholar
  2. BAER, R., BANKIER, A., BIGGIN, M., DEININGER, P., FARRELL, P., GIBSON, T., HATFULL, G., HUDSON, G., SATCHWELL, S., SEGUIN, C., TUFFNELL, P., AND BARRELL, B., DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 310, 207–211 (1984).PubMedCrossRefGoogle Scholar
  3. BORNKAMM, G., HUDEWENTZ, J., FREESE, U., and ZIMBER, U., Deletion of the nontransforming Epstein-Barr virus strain P3HR-1 causes fusion of the large internal repeat to the DSL region. J. Virol., 43, 952–968 (1982).PubMedGoogle Scholar
  4. BRAWERMAN, G., MENDECKI, J., and LEE, S., A procedure for the isolation of mammalian messenger ribonucleic acid. Biochemistry, 11, 637–641 (1972).PubMedCrossRefGoogle Scholar
  5. BREATHNACH, R., and CHAMBON, P., Organization and expression of eucaryotic split genes coding for proteins. Ann. Rev. Biochem., 50, 349–383 (1981).PubMedCrossRefGoogle Scholar
  6. CAMI, B., and KOURILSKY, P., Screening of cloned recombinant DNA in bacteria by in situ colony hybridization. Nucleic Acids Res., 5, 2381–2390 (1978).PubMedCrossRefGoogle Scholar
  7. CHEUNG, A., and KIEFF, E., Long internal direct repeat in Epstein-Barr virus DNA. J. Virol., 44, 286–294 (1982).PubMedGoogle Scholar
  8. DAMBAUGH, T., BEISEL, C., HUMMEL, M., KING, W., FENNEWALD, S., CHEUNG, A., HELLER, M., RAAB-TRAUB, N., AND KIEFF, E., Epstein-Barr virus DNA VII: molecular cloning and detailed mapping. Proc. Natl. Acad. Sci. USA, 77, 2999–3003 (1980).PubMedCrossRefGoogle Scholar
  9. DAMBAUGH, T., and KIEFF, E., Identification and nucleotide sequences of two similar tandem direct repeats in Epstein-Barr virus DNA. J. Virol., 44, 823–833 (1982).PubMedGoogle Scholar
  10. GIVEN, D., YEE, D., GRIEM, K., and KIEFF, E., DNA of Epstein-Barr virus V: direct repeats of the ends of Epstein-Barr virus DNA. J. Virol., 30, 852–862 (1979).PubMedGoogle Scholar
  11. HAYWARD, S., LAZAROWITZ, S., and HAYWARD, G., Organization of the Epstein-Barr virus DNA molecule II: fine mapping of the boundaries of the internal repeat cluster of B95-8 and identification of additional small tandem repeats adjacent to the HR-1 deletion. J. Virol., 43, 201–212 (1982).PubMedGoogle Scholar
  12. HELLER, M., HENDERSON, A., and KIEFF, E., Repeat array in Epstein-Barr virus DNA is related to cell DNA sequences interspersed on human chromosomes. Proc. Acad. Sci. USA, 79, 5916–5920 (1982 a).CrossRefGoogle Scholar
  13. HELLER, M., VAN SANTEN, V., and KIEFF, E., Simple repeat sequence in Epstein-Barr virus DNA is transcribed in latent and productive infections. J. Virol., 44, 311–320 (1982 b).Google Scholar
  14. JEANG, K., and HAYWARD, S., Organization of the Epstein- Barr virus DNA molecule III: location of the P3HR-1 deletion junction and characterization of the Not I repeat units that form part of the template for an abundant 12- 0-tetradecanoylphorbol-13-acetate-induced mRNA transcript. J. Virol., 48, 135–148 (1983).PubMedGoogle Scholar
  15. JONES, M., FOSTER, L., SHEEDY, T., and GRIFFIN, B., The EB virus genome in Daudi Burkitt′s lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. The EMBO J., 3, 813–821 (1984).Google Scholar
  16. JONES, M., and GRIFFIN, B., Clustered repeat sequences in the genome of Epstein-Barr virus. Nucleic Acids Res., 11, 3919–3936 (1983).PubMedCrossRefGoogle Scholar
  17. KIEFF, E., DAMBAUGH, T., HUMMEL, M., and HELLER, M., Epstein-Barr virus transformation and replication. In: Klein G. (ed.), Advances in viral oncology, pp. 133–182, Raven Press, New York (1983).Google Scholar
  18. KING, W., DAMBAUGH, T., HELLER, M., DOWLING, J., and KIEFF, E., Epstein-Barr virus DNA XII: a variable region of the Epstein-Barr virus genome is included in the P3HR-1 deletion. J. Virol., 43, 979–986 (1982).PubMedGoogle Scholar
  19. KING, W., THOMAS-POWELL, A., RAAB-TRAUB, N., HAWKE, M., and KIEFF, E., Epstein-Barr virus RNA V: viral RNA in a restringently infected growth-transformed cell line. J. Virol., 36, 506–518 (1980).PubMedGoogle Scholar
  20. KING, W., VAN SANTEN, V., AND KIEFF, E., Epstein-Barr virus RNA VI: viral RNA in restringently and abortively infected Raji cells. J. Virol., 38, 649–660 (1981).PubMedGoogle Scholar
  21. KINTNER, C., and SUGDEN, B., The structure of the termini of the DNA of Epstein-Barr virus. Cell, 17, 661–671 (1979).PubMedCrossRefGoogle Scholar
  22. LE MOULLEC, J., AKUSJARVI, G., STALHANDSKE, P., PETTERSSON, U., CHAMBRAUD, B., GILARDI, P., NASRI, M., and PERRICAUDET, M., Polyadenylic acid addition sites in the adenovirus type 2 major late transcription unit. J. Virol., 48, 127–134 (1983).PubMedGoogle Scholar
  23. MANDEL, M., AND HIGA, A., Calcium-dependent bacteriophage DNA infection. J. Mol. Biol., 53, 159–162 (1970).PubMedCrossRefGoogle Scholar
  24. MESSING, J., and VIEIRA, J., A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments. Gene, 19, 269–276 (1982).CrossRefGoogle Scholar
  25. MOUNT, S., A catalogue of splice junction sequences. Nucleic Acids Res., 10, 459–472 (1982).PubMedCrossRefGoogle Scholar
  26. PERRICAUDET, M., AKUSJARVI, G., VIRTANEN, A., and PETTERSSON, U., Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature, 281, 694–696 (1979).PubMedCrossRefGoogle Scholar
  27. POLACK, A., DELIUS, H., ZIMBER, U., and BORNKAMM, G., Two deletions in the Epstein-Barr virus genome of the Burkitt lymphoma nonproducer line Raji. Virology, 133, 146–157 (1984).PubMedCrossRefGoogle Scholar
  28. PROUDFOOT, N., and BROWNLEE, G., 3′ non-coding region sequences in eucaryotic messenger RNA. Nature, 263, 211–214 (1976).PubMedCrossRefGoogle Scholar
  29. RABSON, M., GRADOVILLE, L., HESTON, L., and MILLER, G., Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J. Virol., 44, 834–844 (1982).PubMedGoogle Scholar
  30. RIGBY, P., DIECKMANN, M., RHODES, C., and BERG, P., Labelling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I. J. Mol. Biol., 113, 237–251 (1977).PubMedCrossRefGoogle Scholar
  31. ROUGEON, F., and MACH, B., Stepwise bio-synthesis in vitro of globin genes from globin mRNA by DNA polymerase of avian myeloblastosis virus. Proc. Natl. Acad. Sci. USA, 73, 3418–3422 (1976).PubMedCrossRefGoogle Scholar
  32. RYMO, L., Identification of transcribed regions of Epstein-Barr virus DNA in Burkitt lymphoma-derived cells. J. Virol., 32, 8–18 (1979).PubMedGoogle Scholar
  33. SANGER, F., COULSON, A., BARRELL, B., SMITH, A., and ROE, B., Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol., 143, 161–178 (1980).PubMedCrossRefGoogle Scholar
  34. SANGER, F., NICKLEN, S., and COULSON, A., DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467 (1977).PubMedCrossRefGoogle Scholar
  35. STOERKER, J., and GLASER, R., Rescue of transforming Epstein-Barr virus (EBV) from EBV genome-positive epithelial hybrid cells transfected with subgenomic fragments of EBV DNA. Proc. Natl. Acad. Sci. USA, 80, 1726–1729 (1983).PubMedCrossRefGoogle Scholar
  36. STOERKER, J., HOLLIDAY, J., and GLASER, R., Identification of a region of the Epstein-Barr virus (B95-8) genome required for transformation. Virology, 129, 199–206 (1983).PubMedCrossRefGoogle Scholar
  37. THOMAS-POWELL, A., KING, W., AND KIEFF, E., Epstein-Barr virus-specific RNA III: mapping of DNA encoding viral RNA in restringent infection. J. Virol., 29, 261–274 (1979).Google Scholar
  38. VAN SANTEN, V., CHEUNG, A., HUMMEL, M., and KIEFF, E., RNA encoded by the 1R1-U2 region of Epstein-Barr virus DNA in latently infected growth-transformed cells. J. Virol., 46, 424–433 (1983).PubMedGoogle Scholar
  39. VAN SANTEN, V., CHEUNG, A., and KIEFF, E., Epstein-Barr virus RNA VII: size and direction of transcription of virus-specified cytoplasmic RNAs in a transformed cell line. Proc. Natl. Acad. Sci. USA, 78, 1930–1934 (1981).PubMedCrossRefGoogle Scholar
  40. WEIGEL, R., and MILLER, G., Major EB virus-specific cytoplasmic transcripts in a cellular clone of the HR-1 Burkitt lymphoma line during latency and after induction of viral replicative cycle by phorbol esters. Virology, 125, 287–298 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • M. Bodescot
    • 1
  • B. Chambraud
    • 1
  • M. Perricaudet
    • 1
  1. 1.Institut de Recherches Scientifiques sur le CancerC.N.R.SVillejuifFrance

Personalised recommendations