Physiological and Biochemical Properties of Contractile Protein ATPase Activity of Aging Myocardium

  • Y. S. Reddy
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 49)

Abstract

Many regulatory functions in the myocardial cell are changed as a result of age. Growing evidence indicates a significant positive correlation between heart contractile protein enzymatic activity and the functional contractile level of the ventricle. A decrease in myofibrillar, myosin and actomyosin ATPase activity is associated with the aging myocardium (1–3). At high Ca2+ concentrations, the ATPase activity of older rats is significantly lower than that of younger rats. The difference in age-related decline in Ca2+ sensitivity of myocardial ATPase activity may be due to diminished ability of older animals to remove the inhibition of actomyosin ATPase activity by the troponin + tropomyosin system (4). Age-associated alterations in myocardial ultrastructure, cardiac function, excitation-contraction coupling and metabolism have been discussed by several investigators (5,6). Hemodynamic measurements, such as heart rate, cardiac output, blood pressure, and related vascular parameters, have been found in change during the life span of the rat, thus causing the cardiovascular system to operate less efficiently in the older animal (7–9). Cardiac hypertrophy is a characteristic feature that occurs during senescence. It has been shown that depressed contractile protein ATPase activity is a characteristic feature associated with hypertrophy and senescent rat hearts (10–12). Previous reports (13,14) from this laboratory showed that the phosphorylation of contractile proteins is associated with a decrease in contractile protein ATPase activity. The purpose of this study is to investigate age-associated alterations in contractile protein ATPase activity and examine the possible mechanisms associated with such change.

Keywords

Depression EDTA Fluoride Respiration Electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpert, N.R., Gale, H.H. and Taylor, N. In: Factors Influencing Myocardial Contractility (Eds. F. Kavaler, R.D. Tanz and J. Roberts ), Academic Press, New York, 1967, pp. 127–133.Google Scholar
  2. 2.
    Heller, L. and Whitehorn, W.V. Am. J. Physiol. 222: 1613–1619, 1972.PubMedGoogle Scholar
  3. 3.
    Chesky, A.J. and Rockstein, M. Cardiovasc. Res. 11: 242–246, 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Rockstein, M., Chesky, A.J. and Lopez. J. Mech. Ageing Dev. 8: 413–416, 1978.PubMedCrossRefGoogle Scholar
  5. 5.
    Weisfeldt, M.L. The Aging Heart: Its Function and Response to Stress. Raven Press, New York, 1980.Google Scholar
  6. 6.
    Roberts, J. and Goldberg, P.A. Exp. Aging Res. 2: 487–517, 1976.PubMedCrossRefGoogle Scholar
  7. 7.
    Shreiner, D.P., Weisfeldt, M.L. and Shock, N.W. Am. J. Physiol. 217: 176, 1976.Google Scholar
  8. 8.
    Lakatta, E.G. Fed. Proc. 38: 163–167, 1969.Google Scholar
  9. 9.
    Lee, J.C., Karpeles, L.M. and Downing, S.E. Am. J. Physiol. 222: 432–483, 1972.PubMedGoogle Scholar
  10. 10.
    Yin, F.C.P., Spurgeon, H.A., Weisfeldt, M.L. and Lakatta, E.G. Circ. Res. 46: 292–300, 1980.PubMedGoogle Scholar
  11. 11.
    Rockstein, M. and Chesky, J. J. Gerontol. 28: 455–459, 1973.PubMedGoogle Scholar
  12. 12.
    Dhalla, N.S., Das, P.K. and Sharma. G.P. J. Mol. Cell. Cardiol. 10: 363–385, 1978.PubMedCrossRefGoogle Scholar
  13. 13.
    Reddy, Y.S. and Wyborny, L.E. Biochem. Biophys. Res. Commun. 7–3: 703–709, 1976.CrossRefGoogle Scholar
  14. 14.
    Wyborny, L.E. and Reddy, Y.S. Biochem. Biophys. Res. Commun. 81: 1175–1179, 1978.PubMedCrossRefGoogle Scholar
  15. 15.
    Dowell, R.T., Cutilletta, A.F. and Sodt, P.C. J. Appl. Physiol. 39: 1043–1047, 1975.PubMedGoogle Scholar
  16. 16.
    Dowell, R.T. Med. Sci. Sports. Exerc. 9: 246–252, 1977.Google Scholar
  17. 17.
    Solaro, R.J., Pang, D.C. and Briggs, F.N. Biochem. Biophys. Acta 245: 259–262, 1971.PubMedCrossRefGoogle Scholar
  18. 18.
    Huszar, G. and Elzinga, M. J. Biol. Chem. 247: 745–753, 1972.PubMedGoogle Scholar
  19. 19.
    Spudich, J.A. and Watt, S. J. Biol. Chem. 4: 4866–4871, 1971.Google Scholar
  20. 20.
    Martell, A.E. In: Stability Constants of Metallion Complexes, Part II, publ. 17, 1971, p. 651.Google Scholar
  21. 21.
    Fiske, C.H. and Subba, Row, Y. J. Biol. Chem. 66: 375–380, 1925.Google Scholar
  22. 22.
    Reddy, Y.S. and Wyborny, L.E. Tex. Rep. Biol. Med. 34: 79–90, 1980.Google Scholar
  23. 23.
    Cole, H.A. and Perry, S.V. Biochem J. 149: 525–533, 1975.PubMedGoogle Scholar
  24. 24.
    Reddy, Y.S. Am. J. Physiol. 231: 1330–1336, 1976.PubMedGoogle Scholar
  25. 25.
    Walsh, M.P., Vallet, B., Autric, F. and Demaille, J.O. J. Biol. Chem. 254: 1236–1244, 1979.Google Scholar
  26. 26.
    England, P.J. Biochem. J. 160: 295–304, 1976.PubMedGoogle Scholar
  27. 27.
    Solaro, J., Moir, A.J.G. and Perry, S.V. Nature 262: 615–617, 1976.PubMedCrossRefGoogle Scholar
  28. 28.
    Lakatta, E.G., Gerstenblith, G., Angell, C.S., Shock, N.W. and Weisfeldt, M.L. Circ. Res. 36: 262–269, 1975.PubMedGoogle Scholar
  29. 29.
    Yin, F.C.P., Spurgeon, H.A., Greene, H.L., Lakatta, E.G. and Weisfeldt, M.L. Mech. Ageing Dev. 10: 17–25, 1979.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoh, J.F.Y., McGrath, P.Â. and Hale, P.T. J. Mol. Cell. Cardiol. 10: 1053–1076, 1978.PubMedCrossRefGoogle Scholar
  31. 31.
    Lompre, A.M., Schwartz, K., d’Albis, A., LaCombe, G., Van Thiem, N. and Swynghedauw, B. Nature 282: 105–17, 1979.PubMedCrossRefGoogle Scholar
  32. 32.
    Barany, M. J. Gen. Physiol. 50: 197–218, 1967.PubMedCrossRefGoogle Scholar
  33. 33.
    Schwartz, K., Lecarpentier, Y., Martin, J.L., Lompre, A.M., Mercadier, J.J. and Swynghedauw, B. J. Mol. Cell. Cardiol. 13: 1071–1075, 1981.PubMedCrossRefGoogle Scholar
  34. 34.
    Mercadier, J.J., Lompre, A.M., Wisnewsky, C., Samuel, J.L., Bercovici, J., Swynghedauw, B. and Schwartz, K. Circ. Res. 49: 525–532, 1981.PubMedGoogle Scholar
  35. 35.
    Pemrick, S.M. J. Biol. Chem. 255: 8836–8841, 1980.PubMedGoogle Scholar
  36. 36.
    Adelstein, R.S. and Contin, M.A. Nature 256: 597–598, 1975.PubMedCrossRefGoogle Scholar
  37. 37.
    Morgan, M., Perry, S.V., Ottaway, J. Biochem. J. 157: 687–697, 1976.PubMedGoogle Scholar
  38. 38.
    Alexis, M. and Gratzer, W.B. Biochemistry 17: 2319–2325, 1978.PubMedCrossRefGoogle Scholar
  39. 39.
    Holroyde, M.J., Howe, E. and Solaro, R.J. Biochem. Biophys. Acta. 586: 63–69, 1979.Google Scholar
  40. 40.
    Murakami, U. and Uchida, K. Biochem. Biophys. Acta 525: 219–229, 1978.PubMedGoogle Scholar
  41. 41.
    Murakami, U. and Uchida, K. J. Biochem. 86: 553–562, 1979.PubMedGoogle Scholar
  42. 42.
    Bhan, A., Malhotra, A., Hatcher, V.B., Sonnenblick, E.S. and Sceuer, J. J. Mol. Cell. Cardiol. 10: 796–777, 1978.CrossRefGoogle Scholar
  43. 43.
    Kuo, T. and Bhan, A. Biochem. Biophys. Res. Commun. 92: 570–576, 1980.PubMedCrossRefGoogle Scholar
  44. 44.
    Siemankowski, R.F. and Dreizen, P. J. Biol. Chem. 253: 8648–8658, 1978.PubMedGoogle Scholar
  45. 45.
    Griffin, W.S. and Wildenthal, K. J. Mol. Cell. Cardiol. 10: 669–676, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Y. S. Reddy
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations