The Role of Reduced Oxygen Intermediates during Myocardial Ischemia

  • M. L. Hess
  • R. Franson
  • N. H. Manson
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 49)


The following study has two principal aims: 1) the demonstration that oxygen free radicals possess negative inotropic properties and 2) the characterization of the role of the oxygen free radicals during myocardial ischemia in producing the disruption of the excitation-contraction coupling system. In the intact dog, the infusion of phorbol myristate acetate (known to activate neutrophils and generate hydrogen peroxide and hydroxyl radical) resulted in a decrease in mean arterial pressure and cardiac index over 45 min from 105 ± 7.4 to 28 ± 8 mm Hg and 0.20 ± 0.02 to 0.04 ± 0.01 1/min/kg (p<0.01), respectively. This depression of cardiovascular function was inhibited by either pretreatment with superoxide dismutase + catalase or neutrophil depletion. During 30 min of global myocardial ischemia, sarco-plasmic reticulum calcium uptake rates and Ca2+-ATPase activity decreased from 1.38 ± 0.1 to 0.25 ± 0.02 μmoles Ca2+/mg-min and 2.35 ± 0.05 to 0.6 ± 0.03 pmoles Pi/mg-min (p<0.01), respectively. Acidosis (pH = 6.4) significantly increased this rate of decay of sarcoplasmic reticulum function. In vitro, an exogenous free radical generating system (xanthine-xanthine oxidase) produced similar effects on cardiac sarcoplasmic reticulum. In addition, 30 min of normothermic, global ischemia resulted in activation of a phospholipase C-sphingomyelinase with a pH optimum of 5.0. Pretreatment of the heart with superoxide dismutase and catalase inhibited the activation of the sphingomyelinase and preserved sarcoplasmic reticulum calcium uptake rates and Ca2+-ATPase activity. It is concluded that oxygen free radicals, now demonstrated to be potent negative inotropic agents, contribute to the intracellular breakdown of the excitation-contraction coupling system during primary myocardial ischemia by activating a highly toxic sphingomyelinase which in turn disrupts the sarcoplasmic reticulum calcium transport system.


Depression Ischemia Superoxide Oxalate NADH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nayler, W.G., Poole-Wilson, P.A. and Williams, A. J. Mol. Cell. Cardiol. 11:683–706, 1979.CrossRefGoogle Scholar
  2. 2.
    Cobbe, S.M. and Poole-Wilson, P.A. J. Mol. Cell. Cardiol. 12:745–760, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Rao, P.S., Cohen, M.V. and Mueller, H.S. J. Mol. Cell. Cardiol. 15:713–716, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Bourdillon, P.D. and Poole-Wilson, P.A. Circ. Res. 50:360–368, 1982.PubMedGoogle Scholar
  5. 5.
    Hohl, C.A., Ansel, R., Altschuld, R. and Brierly, G.P. Am. J. Physiol. 242:H1022–H1030, 1982.PubMedGoogle Scholar
  6. 6.
    McCord, J.M. and Fridovich, I. Ann. Intern. Med. 89:122–127, 1978.PubMedGoogle Scholar
  7. 7.
    Hess, M.L., Warner, M.F., Robbins, A.D., Crute, S. and Greenfield, L.J. Cardiovasc. Res. 15:380–389, 1981.CrossRefGoogle Scholar
  8. 8.
    Rowe, G.T., Eaton, L.R. and Hess, M.L. J. Mol. Cell. Cardiol. (In Press), 1984.Google Scholar
  9. 9.
    Hess, M.L., Okabe, E. and Kontos, H.A. J. Mol. Cell. Cardiol. 13:767–772, 1981b.CrossRefGoogle Scholar
  10. 10.
    Lowry, O.H., Rosenbrough, A.L., Farr, A.L. and Randall, R.J. J. Biol. Chem. 26:267–275, 1951.Google Scholar
  11. 11.
    Penney, C.O. Anal. Biochem. 75:201–210, 1976.PubMedCrossRefGoogle Scholar
  12. 12.
    Bligh, E.G. and Dyer, W.J., Can, J. Biochem. Physiol. 37:911–917, 1959.Google Scholar
  13. 13.
    Bartlett, G.R. J. Biol. Chem. 234:466–468, 1959.Google Scholar
  14. 14.
    Dole, V.P. J. Clin. Invest. 35:150–154, 1956.CrossRefGoogle Scholar
  15. 15.
    Duncombe, W.G. Biochem. J. 88:7–10, 1963.PubMedGoogle Scholar
  16. 16.
    Hysmith, R.M. and Franson, R.C. Biochim. Biophys. Acta 711:26–32, 1982a.Google Scholar
  17. 17.
    Hysmith, R.M. and Franson, R.C. Biochim. Biophys. Acta 712:698–701, 1982b.Google Scholar
  18. 18.
    Yedgar, S. and Gatt, S. Biochemistry 15:2570–2573, 1976.PubMedCrossRefGoogle Scholar
  19. 19.
    Rowe, G.T., Manson, N.H., Caplan, M. and Hess, M.L. Circ. Res. 53:584–591, 1983.PubMedGoogle Scholar
  20. 20.
    Feher, J.J., Briggs, F.N. and Hess, M.L. J. Mol. Cell. Cardiol. 12:427–432, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Imai, K., Wang, T., Millard, R.W., Ashraf, M., Kranias, E.G., Asano, G., DeGende, A.O.G., Nagao, T., Solaro, R.J. and Schwartz, A. Cardiovasc. Res. 17:696–709, 1983.PubMedCrossRefGoogle Scholar
  22. 22.
    Shlafer, M., Kane, P.F. and Kirsh, M.M. J. Thorac. Cardiovas. Surg. 83:830–839, 1982.Google Scholar
  23. 23.
    Stewart, J.R., Blackwell, W.H., Crute, S.L., Loughlin, V., Greenfield, L.J. and Hess, M.L. J. Thorac. Cardiovas. Surg. 86:262–272, 1983.Google Scholar
  24. 24.
    Hess, M.L., Manson, N.H. and Okabe, E. Can. J. Physiol. Pharmacol. 60:1382–1389, 1982.Google Scholar
  25. 25.
    Meerson, F.Z., Kagan, V.E., Kozlov, Y.P., Belkina, L.M. and Arkhipenko, Y.V. Basic Res. Cardiol. 77:465–485, 1982.PubMedCrossRefGoogle Scholar
  26. 26.
    Welman, E. and Peters, T.J. J. Mol. Cell. Cardiol. 9:101–120, 1977.PubMedCrossRefGoogle Scholar
  27. 27.
    Hess, M.L., Okabe, E., Poland, J., Warner, M., Stewart, J.R. and Greenfield, L.J. J. Cardiovas. Pharmacol. 5:35–43, 1983.CrossRefGoogle Scholar
  28. 28.
    McCord, J.M. and Fridovich, I. Photochem. Photobiol. 17:115–121, 1973.PubMedCrossRefGoogle Scholar
  29. 29.
    Tait, G.A., Young, R.B., Wilson, G.J., Steward, D.J. and MacGregor, D.C. Am. J. Physiol. 243:H1027–H1031, 1982.PubMedGoogle Scholar
  30. 3O.
    Garlick, P.B., Radda, G.K. and Seeley, P.J. Biochem. J. 184:547–554, 1979.PubMedGoogle Scholar
  31. 31.
    Mak, I.T., Misra, H.P. and Weglicki, W.B. J. Biol. Chem. 258:13733–13737, 1983.PubMedGoogle Scholar
  32. 32.
    Hess, M.L., Okabe, E., Ash, P. and Kontos, H.A. Cardiovasc. Res. 18:149–157, 1984.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • M. L. Hess
    • 1
  • R. Franson
    • 1
  • N. H. Manson
    • 1
  1. 1.The Departments of Medicine, Biochemistry and Physiology and BiophysicsThe Medical College of VirginiaRichmondUSA

Personalised recommendations