Advertisement

Arachidonic Acid Metabolism and Tumor Initiation

  • Lawrence J. Marnett
Part of the Prostaglandins, Leukotrienes, and Cancer book series (PLAC, volume 2)

Abstract

Chapter 1 of this volume describes the importance of reactions of electrophiles with nucleic acids in the initiation phase of carcinogenesis. Compounds that covalently bind to or otherwise damage DNA (e.g., by induction of strand scission) can alter the functional properties of the DNA molecule. The genetic changes that result may be a critical component of initiation. Two ways by which arachidonic acid metabolism can lead to DNA damage have been studied. In the first, metabolites of arachidonic acid bind to DNA and induce mutation or cell transformation. In the second, cooxidations by oxidizing agents generated during fatty acid hydroperoxide metabolism metabolically activate endogenous or xenobiotic compounds to derivatives that react with DNA. Both types of DNA damage occur during arachidonic acid metabolism in vitro and are discussed in this chapter.

Keywords

Aromatic Amine Peroxyl Radical Arachidonic Acid Metabolism Polycyclic Hydrocarbon Fatty Acid Hydroperoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malrosten C: Prostaglandins and thromboxanes. Ann. Rev. Biochem. (47): 997–1029, 1978.PubMedCrossRefGoogle Scholar
  2. 2.
    Samuelsson B: Leukotrienes-mediators of immediate hypersensitivity. Reactions and inflammation. Science (220): 568–575, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson W, Crutchley DJ, Chaudhari A, Wilson AGE, Eling TE: Studies on the covalent binding of an intermediate(s) in prostaglandin biosynthesis to tissue macromolecules. Biochem. Biophys. Acta (573): 40–50, 1979.PubMedGoogle Scholar
  4. 4.
    Basil A, Marnett L.J: Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis (4): 331–333, 1983.CrossRefGoogle Scholar
  5. 5.
    Salomon RG, Miller DB, Zagorski MG, Revison BS, Lal K, Raychaudhuri SR, Avasthi K: Levuglandins: Isolation, characterization, and total synthesis of new secoprostanoid products from prostaglandin endoperoxides. Abst. Kyoto Conf. on Prostaglandins, Abstract #S4–17.Google Scholar
  6. 6.
    Hamberg M, Svensson J, Wakabayashi T, Samuelsson B: Isolation and structure of 2 prostaglandin endoperoxides that cause platelet-aggregation. Proc. Natl. Acad. Sci. USA (71): 345–349, 1974.PubMedCrossRefGoogle Scholar
  7. 7.
    Nugteren DH, Hazelhof E: Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim. Biophys. Acta (326): 448–461, 1973.PubMedGoogle Scholar
  8. 8.
    Hamberg M, Samuelsson B: Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J. Biol. Chem. (242): 5344–5354, 1967.PubMedGoogle Scholar
  9. 9.
    Diczfalusy U, Falardeau P, Hammarstrom S: Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthase. FEBS Letts. (84): 271–274, 1977.CrossRefGoogle Scholar
  10. 10.
    Watanabe K, Yamamoto S, Hayaishi 0: Reaction of prostaglandin endoperoxides with prostaglandin I synthetase solubilized from rabbit aorta microsomes. Biochem. Biophys. Res. Commun. (87): 192–199, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Bernheim F, Bernheim MLC, Wilbur KM: The reaction between thiobarbituric acid and the oxidation products of certain lipids. J. Biol. Chem. (174): 257–264, 1948.PubMedGoogle Scholar
  12. 12.
    Shamberger RJ, Andreone TL, Willis CE: Antioxidants and cancer. IV. Initiating activity of malonaldehyde as a carcinogen. J. Natl. Cancer Inst. (53): 1771–1773, 1974.PubMedGoogle Scholar
  13. 13.
    Mukai FH, Goldstein BD: Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science (191): 868–869, 1976.PubMedCrossRefGoogle Scholar
  14. 14.
    Marnett LJ, Tuttle MA: Comparison of the mutagenicities of malondialdehyde and the side products formed during its chemical synthesis. Cancer Res. (40): 276–282, 1980.PubMedGoogle Scholar
  15. 15.
    Fischer SM, Olge S, Marnett LJ, Nesnow S, Slaga TJ: The lack of initiating and/or promoting activity of sodium malondialdehyde on Sencar mouse skin. Cancer Letts. (19): 61–66, 1983.CrossRefGoogle Scholar
  16. 16.
    Apaja M: Evaluation of toxicity and carcinogenicity of malonaldehyde. Acta Universitatis Ouluensis, Series D. (55): 1–61, 1980.Google Scholar
  17. 17.
    Marnett LJ, Buck J, Tuttle MA, Basu AK, Bull AW: Distribution and oxidation of malondialdehyde in mice. Prostaglandins (In press).Google Scholar
  18. 18.
    Basu AK, Marnett LJ: Molecular requirements for the mutagenicity of malondialdehyde and related acroleins. Cancer Res. (44): 2848–2854, 1984.PubMedGoogle Scholar
  19. 19.
    Malaveille C, Bartsch H, Grover PL, Sims P: Mutagenicity of non-K-region diols and diol-epoxides of benz(a)anthracene and benzo(a)pyrene in S. typhimurium TA100. Biochem. Biophys. Res. Commun. (66):693–700, 1975.PubMedCrossRefGoogle Scholar
  20. 20.
    Wood AW, Wislocki PG, Chang RL, Levin W, Lu AYH, Yagi H, Hernandez 0, Jerina DM, Conney AH: Mutagenicity and cytotoxicity of benzo(a)pyrene benzo-ring epoxides. Cancer Res. (36): 3358–3366, 1976.PubMedGoogle Scholar
  21. 21.
    Gardner HW: Lipid enzymes: Lipases, lipoxygenases, and hydroperoxidases. In: MG Simic and M. Karel (eds.) Autoxidation in Food and Biological Systems. Plenum, New York, pp. 447–504, 1980.Google Scholar
  22. 22.
    Benedetti A, Comporti M, Esterbauer H: Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim. Biophys. Acta (620): 281–296, 1980.PubMedGoogle Scholar
  23. 23.
    Eder E, Heschler D, Neudecker T: Mutagenic properties of allylic and α,β-unsaturated compounds: consideration of alkylating mechanisms. Xenobiotica (12): 831–848, 1982.PubMedCrossRefGoogle Scholar
  24. 24.
    Marnett LJ, Hurd H, Hollstein M, Levin DE, Esterbauer H, Ames BN: Naturally-occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat. Res. (In press).Google Scholar
  25. 25.
    Miller JA, Miller EC: The initiation stage of chemical carcinogenesis: An introductory overview. In: (TJ Powles, RS Bockman, KV Honn and P Ramwell) Prostaglandins and Cancer: First International Conference. Alan R. Liss, Inc., New York, pp. 81–96.Google Scholar
  26. 26.
    Conney AH: Induction of microsomaï-enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic-hydrocarbons. Cancer Res. (42): 4875–4917, 1982.PubMedGoogle Scholar
  27. 27.
    Levin W, Lu AYH, Ryan D, Wood AW, Kapitulnik J, West S, Huang M-T, Conney AH, Thakker DR, Holder G, Yagi H, Jerina DM: Properties of liver microsomal monoxygenase system and epoxide hydrase-factors influencing metabolism and mutagenicity of benzo[a]pyrene. In: HH Hiatt, JD Watson and JA Winsten (eds.) Origins of Human Cancer. Cold Spring Harbor, Cold Spring, pp. 659–682, 1977.Google Scholar
  28. 28.
    Rydstrom J, Montelius J, Bengtsson M: In: Extrahepatic Drug Metabolism and Chemical Carcinogenesis. Elsevier, New York, 1983.Google Scholar
  29. 29.
    Cavalieri EL, Rogan EG: One-electron and two-electron oxidation in aromatic hydrocarbon carcinogenesis. In: WA Pryor (ed.) Free Radicals in Biology. Academic Press, New York, Vol. 6, pp. 323–369, 1984.Google Scholar
  30. 30.
    Bartsch H, Hecker E: Metabolic activation of carcinogen N-hydroxy-N-2-acetylaminofluorene-3. Oxidation with horseradish-peroxidase to yield 2-nitrosofuorene ana N-acetoxyN-2-acetylaminofluorene. Biochim. Biophys. Acta (237): 567–578, 1971.PubMedGoogle Scholar
  31. 31.
    Floyd RA, Soong LM, Culver PL: Cancer Res. (36): 1510–1519, 1976.PubMedGoogle Scholar
  32. 32.
    Metzler M, McLachlan JA: Peroxidase-mediated oxidation: A possible pathway for metabolic activation of diethylstilbesterol. Biochem. Biophys. Res. Commun. (85): 874–884, 1978.PubMedCrossRefGoogle Scholar
  33. 33.
    Badwey JA, Karnovsky ML: Active oxygen species and the functions of phagocytic leukocytes. Ann. Rev. Biochem. (49): 695–726, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Tolbert NE: Metabolic pathways in peroxisomes and glyoxysomes. Ann. Rev. Biochem. (49): 695–726, 1980.CrossRefGoogle Scholar
  35. 35.
    White RE, Coon MJ: Oxygen activation by cytochrome P-450. Ann. Rev. Biochem. (49): 315–356, 1980.PubMedCrossRefGoogle Scholar
  36. 36.
    Hamberg M, Samueisson B. Prostaglandin endoperoxides-novel transformations of arachidonic acid in human platelets. Proc. Natl. Acad. Sci. USA (71): 3400–3404, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Bryant RW, Simon TC, Bailey JM: Role of glutathione peroxidase and hexone-monophosphate shunt in platelet lipoxygenase pathway. J. Biol. Chem. (257): 14937–14943, 1982.PubMedGoogle Scholar
  38. 38.
    Ohki S, Ogino N, Yamamoto S, Hayaishi O: Prostaglandin hydroeroxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J. Biol. Chem. (254): 839–846, 1979.Google Scholar
  39. 39.
    Marnett LJ: Hydroperoxide-dependent oxidations during prostaglandin biosynthesis. In: WA Pryor (ed.) Free Radicals in Biology, Vol. 6. Academic Press, New York, pp. 63–94, 1984.Google Scholar
  40. 40.
    Marnett LJ, Eling TE: Cooxidation during prostaglandin biosynthesis: A pathway for the metabolic activation of xenobiotics. In: E Hodgson, JR Bend and R.M. Philpot (eds.) Reviews in Biochemical Toxicology, Vol. 5. Elsevier/North Holland, New York, pp. 135–172, 1983.Google Scholar
  41. 41.
    Marnett LJ: Polycyclic hydrocarbon oxidation during prostaglandin biosynthesis. Life Sci. (29): 531–546, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Marnett LJ, Reed GA, Johnson JT: Prostaglandin synthase dependent benzo(a)pyrene oxidation: Products of the oxidation and inhibition of their formation by antioxidants. Biochem. Biophys. Res. Commun. (79): 569–576, 1977.PubMedCrossRefGoogle Scholar
  43. 43.
    Lorentzen RJ, Caspary WJ, Lesko SA, Ts’o POP: Autoxidation of 6-hydroxybenzo[a]pyrene and 6-oxobenzo[a]pyrene radical, reactive metabolites of benzo[a]pyrene. Biochemistry (14): 3970–3977, 1975.CrossRefGoogle Scholar
  44. 44.
    Lesko S, Caspary W, Lorentzen R, Ts’o POP: Enzyme formation of 6-oxobenzo[a]pyrene radical in rat liver homogenates from carcinogenic benzo[a]pyrene. Biochemistry (14): 3978–3984, 1975.CrossRefGoogle Scholar
  45. 45.
    Marnett LJ, Reed GA: Peroxidatic oxidation of benzo[a]pyrene and prostaglandin biosynthesis. Biochemistry (18): 2923–2929, 1979.PubMedCrossRefGoogle Scholar
  46. 46.
    Bickers DR, Mukhtar H, Dutta-Choudhury T, Marcelo CL, Voorhees JJ: Aryl hydrocarbon hydroxylase, epoxide hydrolase, and benzo[a]pyrene metabolism in human epidermis: Comparative studies in normal subjects and patients with psoriasis. J. Invest. Dermatol. (83): 51–56, 1984.PubMedCrossRefGoogle Scholar
  47. 47.
    Sivarajah K, Anderson MW, Eling T: Metabolism of benzo[a]pyrene to reactive intermediate(s) via prostaglandin biosynthesis. Life Sci. (23): 2571–2578, 1978.PubMedCrossRefGoogle Scholar
  48. 48.
    Marnett LJ, Reed GA, Dennison DJ: Prostaglandin synthetase dependent activation of 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene to mutagenic derivatives. Biochem. Biophys. Res. Commun. (82): 210–216, 1978.PubMedCrossRefGoogle Scholar
  49. 49.
    Wislocki PG, Wood AW, Chang RL, Levin W, Yagi H, Hernandez 0, Dansette PM, Jerina DM, AH Conney: Mutagenicity and cytotoxicity of benzo(a)pyrene arene oxides, phenols, quinones, and dihydrodiols in bacterial and mammalian cells. Cancer Res. (36): 3350–3357, 1976.PubMedGoogle Scholar
  50. 50.
    Fahl WE, Scarpelli D, Gill K: Association of specific chromosome abnormalities with type of acute leukemia and with patient age. Cancer Res. (41): 3400–3406, 1981.PubMedGoogle Scholar
  51. 51.
    Brookes P, Osborne MR: Mutation in mammalian cells by stereo-isomers of anti-benzo[a]pyrene diolepoxide in relation to the extent and nature of the DNA reaction-products. Carcinogenesis (3): 1223–1226, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Adriaenssens PI, White CM, Anderson MW: Dose-response relationship for the binding of benzo(a)pyrene metabolites to DNA and protein in lung, liver, and forestomach of control and butylated hydroxyanisole-tretated mice. Cancer Res. (43): 3712–3719, 1983.PubMedGoogle Scholar
  53. 53.
    Ashurst SW, Cohen GM, Nesnow S, DiGiovanni J, Slaga TJ: Formation of benzo(a)pyrene/DNA adducts and their relationship to tumor initiatin in mouse epidermis. Cancer Res. (43): 1024–1029, 1983.PubMedGoogle Scholar
  54. 54.
    Marnett LJ, Johnson JT, Bienkowski MJ: Arachidonic acid dependent metabolism of 7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene by ram seminal vesicles. FEBS Letts. (106): 13–16, 1979.CrossRefGoogle Scholar
  55. 55.
    Sivarajah K, Mukhtar H, Eling T: Arachidonic acid-dependent metabolism of (±) trans-7,8-dihydroxy-7,8-dihydro-benzo[a]pyrene (B,P-7,8-diol) to 7,10/8,9 tetrols. FEBS Letts. (106): 17–20, 1979.CrossRefGoogle Scholar
  56. 56.
    Marnett LJ, Bienkowski MJ: Hydroperoxide-dependent oxygenation of 7,8-dihydroxy-7,8-diydrobenzo[a]pyrene by ram seminal vesicle microsomes. Source of the oxygen. Biochem. Biophys. Res. Commun. (96): 639–647, 1980.PubMedCrossRefGoogle Scholar
  57. 57.
    Marnett LJ, Panthananickal A, Reed GA: Metabolic activation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene during prostaglandin biosynthesis. Drug. Metab. Rev. (13):235–247, 1982.PubMedCrossRefGoogle Scholar
  58. 58.
    Panthananickal A, Marnett LJ: Arachidonic acid-dependent metabolism of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to polyguanylic acid-binding derivatives. Chem. Biol. Interact. (258): 4411–4418, 1983.Google Scholar
  59. 59.
    Reed GA, Marnett LJ: Metabolism and activation of 7,8-dihydrobenzo[a]pyrene during prostaglandin biosynthesis: Intermediacy of a bay-region epoxide. J. Biol. Chem. (257): 11368–11376, 1982.PubMedGoogle Scholar
  60. 60.
    Panthananickal A, Weller P, Marnett LJ: Stereoselectivity of the epoxidation of 7,8-dihydrobenzo[a]pyrene by prostaglandin H synthase and cytochrome P-450 determined by the identification of polyguanylic acid adducts. J. Biol. Chem. (258): 4411–4418, 1983.PubMedGoogle Scholar
  61. 61.
    Guthrie J, Robertson IGC, Zeiger E, Boyd JA, Eling TE: Selective activation of some dihydrodiols of several poly-cyclic aromatic hydrocarbons to mutagenic products by prostaglandin synthetase. Cancer Res. (42): 1620–1623, 1982.PubMedGoogle Scholar
  62. 62.
    Lasker J, Sivarajah K, Mason RP, Kalyanaraman B, Abou-Donia MB, Eling TE: A free radical mechanism of prostaglandin synthase-dependent aminopyrine demethylation. J. Biol. Chem. (256): 7764–7767, 1981.PubMedGoogle Scholar
  63. 63.
    Morton KC, King CM, Vaught JB, Wang, CY, Lee MS, Marnett LJ: Prostaglandin H synthase-mediated reaction of carcinogenic arylamines with t-RNA and polynucleotides. Biochem. Biophys. Res. Commun. (111): 96–103, 1983.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamazoe Y, Miller DW, Gupta RC. Zenser TV, Weis CC, Kadlubar FF: DNA adducts formed by prostaglandin H synthase-mediated activation of carcinogenic arylamines. Proc. Amer. Assn. Cancer Res. (25): 91, 1984.Google Scholar
  65. 65.
    Siedlik PH, Marnett LJ: Oxidizing radical generation by prostaglandin synthase. Meth. Enzymol. (105): 412–416, 1984.PubMedCrossRefGoogle Scholar
  66. 66.
    Marnett LJ, Bienkowski MJ, Pagels WR, Reed GA: Mechanism of xenobiotic cooxygenation coupled to prostaglandin H2 biosynthesis. In: B Samuelsson, PW Ramwell and R Paoletti (eds.) Advances in Prostaglandins and Thromboxane Research, Vol. 6. Raven Press, New York, pp. 149–151, 1980.Google Scholar
  67. 67.
    Pryor WA: Free radicals in autoxidation and in aging. Part I. Kinetics of the autoxidatin of linoleic acid in SDS micelles; Calculations of radical concentrations, kinetic chain lengths, and the effects of Vitamin E. In: D Armstrong (ed.) Free Radicals in Biology and Aging. Raven Press, New York. (In press).Google Scholar
  68. 68.
    Reed GA, Brooks EA, Eling TE: Phenylbutazone-dependent epoxidatin of 7,8-dihdyroxy-7,8-dihydrobenzo(a)pyrene. J. Biol. Chem. (259): 5591–5595, 1984.PubMedGoogle Scholar
  69. 69.
    Samokyszyn VM, Sloane BF, Honn KV, Marnett LJ: Cooxidation of 13-cis retinoic acid by prostaglandin H synthase. Biochem. Biophys. Res. Commun. (124): 430–436, 1984.PubMedCrossRefGoogle Scholar
  70. 70.
    Verma AK, Rice HM, Shapas BD, Boutwell RK: Inhibition of 12–0-tetradecanoylphorbol-l3-acetate-induced ornithine decarboxylase activity in mouse epidermis by vitamin A analogs (retinoids). Cancer Res. (38): 793–801, 1979.Google Scholar
  71. 71.
    Hennings H, Wenk ML, Donahoe R: Retinoic acid promotion of papilloma formation in mouse skin. Cancer Letts. (16): 1–5, 1982.CrossRefGoogle Scholar
  72. 72.
    Marnett LJ, Wiodawer P, Samuelsson B: Cooxidation of organic substrates by prostaglandin synthetase of sheep vesicular gland. J. Biol. Chem. (250): 8510–8517, 1975.PubMedGoogle Scholar
  73. 73.
    Sivarajah K, Lasker JM, Eling TE: Prostaglandin synthetasedependent cooxidation of (±)-benzo[a]pyrene-7,8-dihydrodiol by human lung and other mammalian tissues. Cancer Res. (41): 1843–1847, 1982.Google Scholar
  74. 74.
    Zenser TV, Mattamal MB, Davis BB: Differential distribution of the mixed-function oxidase activities in rabbit kidney. J. Pharmacol. Exp. Ther. (207): 719–725, 1978.PubMedGoogle Scholar
  75. 75.
    Rapp NS, Zenser TV, Brown WW, Davis BB: Metabolism of benzidine by a prostaglandin-mediated process in inner renal medullary slices. J. Pharmacol. Exp. Ther. (215): 401–407, 1980.PubMedGoogle Scholar
  76. 76.
    Van der Ouderaa FJ, Buytenhek M, Nugteren DH, Van Dorp DA: Purification and characterization of prostaglandin endoperoxide synthetase from sheep vesicular glands. Biochim. Biophys. Acta (487): 315–331, 1977.PubMedGoogle Scholar
  77. 77.
    Van der Ouderaa FJ, Buytenhek M, Slikkerveer FJ, Van Dorp DA: On the haemoprotein character of prostaglandin endoperoxide synthetase. Biochim. Biophys. Acta (572): 29–42, 1979.PubMedGoogle Scholar
  78. 78.
    Pagels WR, Sachs RJ, Marnett LJ, Dewitt DL, Day JS, Smith WL: Immunochemical evidence for the involvement of prostaglandin H synthase in hydroperoxide-dependent oxidations by ram seminal vesicle microsomes. J. Biol. Chem. (258): 6517–6523, 1983.PubMedGoogle Scholar
  79. 79.
    Koshihara Y, Senshu T, Kawamwa M, Murota S: Sodium n-butyrate induces prostaglandin synthetase in mastocytoma P815 cells. Biochim. Biophys. Acta (617): 1253–1258, 1980.Google Scholar
  80. 80.
    Murota S, Morita I: Prostaglandin-synthesizing system in rat liver: Changes with aging and various stimuli. In: B. Samuelsson, P.W. Ramwell and R. Paoletti (eds.) Advances in Prostaglandin and Thrmboxane Research, Vol. 8. Raven Press, New York, pp. 1495–1506, 1980.Google Scholar
  81. 81.
    Sivarajah K, Jones KG, Fouts JR, Devereux T, Shirley JE, Eling TE: Prostaglandin synthetase and cytochrome P450-dependent metabolism of (±) benzo[a]pyrene 7,8-dihydrodiol by enriched population of rat Clara cells and alveolar type II cells. Cancer Res. (43): 2632–2636, 1983.PubMedGoogle Scholar
  82. 82.
    Sivarajah K, Lasker JM, Eling TE, Abou-Donia MB: Metabolism of N-alkyl compounds during the biosynthesis of prostaglandins. Mol. Pharmacol. 921): 133–141, 1982.Google Scholar
  83. 83.
    Smith PBW, Caldwell J, Smith RL, Horner MW, Houghton E, Mass MS: The disposition of phenylbutazone in the horse. Abstracts Ninth European Workshop on Drug Metabolism. Abstract #P28, 1984.Google Scholar
  84. 84.
    Hrycay EG, O’Brien PJ: Cytochrome P-450 as a microsomal peroxidase in steroid hydroperoxide reduction. Arch. Biochem. Biophys. (153): 480–494, 1972.PubMedCrossRefGoogle Scholar
  85. 85.
    McCarthy M-B, White RE: Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate. J. Biol. Chem. (258): 9153–9158, 1983.PubMedGoogle Scholar
  86. 86.
    Thakker DR, Yagi H, Akagi H, Koreeda M, Lu AYH, Levin W, Wood AW, Conney AH, Jerina DM: Metabolism of benzo(a)pyrene. VI. Stereoselective metabolism of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol to diol epoxides. Chem. Biol. Interact. (16): 281–300, 1977.PubMedCrossRefGoogle Scholar
  87. 87.
    Deutsch J, Leutz JC, Yang SK, Gelboin HV, Chang YL, Vatsis KP, Coon MJ: Regio-and stereoselectivity of various forms of cytochrome P450 in the metabolism of benzo(a)pyrene and (-) trans-7,8-dihydroxy-7,8 dihydrobenzo(a)pyrene as shown by product formation and binding to DNA. Proc. Natl. Acad. Sci. USA. (75): 3123–3127, 1978.PubMedCrossRefGoogle Scholar
  88. 88.
    Dunford HB, Stillman JS: On the function and mechanism of action of peroxidases. Coord. Chem. Rev. (19): 187–251, 1976.Google Scholar
  89. 89.
    Weller P, Markey CM, Marnett LJ: Enzymatic reduction of 5-phenyl-4-pentenyl hydroperoxide: Detection of peroxidases and identification of peroxidase reducting substrates. Arch. Biochem. Biophys. (Submitted).Google Scholar
  90. 90.
    Dix TA, Marnett LJ: Free radical epoxidation of 7,8dihydroxy-7,8-dihydrobenzo[a]pyrene by hematin and polyunsaturated fatty acid hydroperoxides. J. Amer. Chem. Soc. (103): 6744–6746, 1981.CrossRefGoogle Scholar
  91. 91.
    Dix TA, Fontana R, Panthani A, Marnett: J. Biol. Chem. (In press).Google Scholar
  92. 92.
    Morgenstern R, DePierre JW, Lind C, Guthenberg C, Mannervik B, Ernster L: Benzo(alpha) pyrene quinones can be generated by lipid peroxidation and are conjugated with glutatione by glutathione-S-transferase-B from rat liver. Biochem. Biophys. Res. Commun. (99): 682–690, 1981.PubMedCrossRefGoogle Scholar
  93. 93.
    Gower JD, Wills ED: The generation of oxidation products of benzo[a]pyrene by lipid peroxidation: A study using r-irradiation. Carcinogenesis (5):1183–1189, 1984.PubMedCrossRefGoogle Scholar
  94. 94.
    Mayo FR: Free-radical autoxidations of hydrocarbons. Acc. Chem. Res. (1): 193–201, 1968.CrossRefGoogle Scholar
  95. 95.
    Battista JR, Marnett LJ: Prostaglandin H synthase-dependent epoxidation of aflatoxin B1. Carcinogenesis (Submitted).Google Scholar
  96. 96.
    Porter NA: Chemistry of lipid peroxidation. Meth. Enzymol. (105): 273–282, 1984.PubMedCrossRefGoogle Scholar
  97. 97.
    Dix TA, Marnett LJ: Metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid per-oxidation. Science (221): 77–79, 1983.PubMedCrossRefGoogle Scholar
  98. 98.
    Lands WEM, Samuelsson B: Phospholipid precursors of prostaglaridins. Biochim. Biophys. Acta (164): 426–429, 1968.Google Scholar
  99. 99.
    Vonkeman H, Van Dorp DA: The action of prostaglandin synthetase on 2-arachidonyl-lecithin. Biochim. Biophys. Acta (164): 430–432, 1968.PubMedGoogle Scholar
  100. 100.
    Galli C, Galli G, Porcellati G: In: Advances in Prostaglandin and Thromboxane Research, Vol. 3. Raven Press, New York, 1978.Google Scholar
  101. 101.
    Fletcher R: Lipids of human myocardium. Lipids. (7): 728–732, 1972.PubMedCrossRefGoogle Scholar
  102. 102.
    Wong PK, Hampton MJ, Floyd RA: Evidence for lipoxygenaseperoxidase activation of N-hydroxy-2-acetylamino-fluorene by rat mammary gland parenchymal cells. In: T.J. Powles, R.S. Bockman, K.V. Honn and P.W. Ramwell (eds.). Alan R. Liss, New York, pp. 167–179, 1982.Google Scholar
  103. 103.
    Reed GA, Grafstrom RC, Krauss RS, Autrup H, Eling TE: Prostaglandin-H synthase-dependent cooxygenation of (±)-7,8hydroxy-7,8-dihydrobenzo[a]pyrene in hamster trachea and human bronchus explants. Carcinogensis (5): 955–960, 1984.CrossRefGoogle Scholar
  104. 104.
    Amstad P, Cerutti P: DNA-binding of aflatoxin B-1 by cooxygenation in mouse embryo fibroblasts C3H–10TI cells. Biochem. Biophys. Res. Commun. (112): 1034–1040, 1983.PubMedCrossRefGoogle Scholar
  105. 105.
    Adriaenssens PI, Sivarajah K, Boorman GA, Eling TE, Anderson MW: Effect of aspirin and indomethacin on the formation of benzo(a)pyrene-induced pulmonary adenomas and DNA adducts in A/HEJ mice. Cancer Res. (43):4762–4767, 1983.PubMedGoogle Scholar
  106. 106.
    Kornbrust DJ, Mavis RD: Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation-correlation with vitamin E contents. Lipids (15): 315–322, 1980.PubMedCrossRefGoogle Scholar
  107. 107.
    Garattini E, Coccia P, Romano M, Jiritano L, Noseda A, Salmona M: Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in Guinea pigs. Cancer Res. (44): 5150–5155, 1984.PubMedGoogle Scholar
  108. 108.
    Witz G, Goldstein BD, Amoruso M, Stone DS, Troll W: Retinoid inhibition of superoxide anion radical production by polymorphouclear leukocytes stimulted by tumor promoters. Biochem. Biophys. Res. Commun. (97): 883–888, 1980.PubMedCrossRefGoogle Scholar
  109. 109.
    Slaga TJ, Klein-Szanto AJP, Triplett LL, Yotti LP, Trosko JE: Tumor-promoting activity of benzoyl peroxide. A widely used free radical generating compound. Science (213): 1023–1025, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Lawrence J. Marnett

There are no affiliations available

Personalised recommendations