Skip to main content

Part of the book series: Prostaglandins, Leukotrienes, and Cancer ((PLAC,volume 3))

Abstract

Recent symposia and reviews (1–8) have attributed to proteases a significant role in regulation of physiological functions. Aside from the well-known function of general protein degradation, they also produce limited proteolysis which converts zymogens to active enzymes by the hydrolysis of a single peptide bond or of several bonds by sequential action. Much work over the past 10–15 years has been directed at the determination of a specific role for proteases in the regulation of normal cell growth, the functions of specialized cells, and in the control of tumor development, growth and metastases. The presence of a variety of protease inhibitors with varying types of specificity in plasma and cells of many tissues (8) points to a fine control of physiological functions for proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roblin R, Chow L, Black PH: Proteolytic enzymes, cell surface changes, and viral transformation. Adv Cancer Res (22): 203–260, 1975.

    CAS  Google Scholar 

  2. Rossman TG, Troll W: Protease inhibitors in carcinogenesis: possible sites of action. In: Slaga TJ (ed) Carcinogenesis Vol. 5, Modifiers of chemical carcinogenesis. Raven Press, New York, 1980, pp 127–143.

    Google Scholar 

  3. Ribbons DW, Brew K (eds) Proteolysis and Physiological regulation. Academic Press, New York, 1976.

    Google Scholar 

  4. Clarkson B, Baserga R (eds) Control of proliferation in animal cells. Cold Spring Harbor Laboratory, 1974.

    Google Scholar 

  5. Reich E. Rifkin, DB, Shaw E (eds) Proteases and biological control. Cold Spring Laboratory, 1975.

    Google Scholar 

  6. Holzer H, Tschesche H (eds) Biological functions of proteinases. Springer-Verlag, New York, 1979.

    Google Scholar 

  7. Barrett AJ (ed) Proteinases in mammalian cells and tissues. North-Holland, New York, 1979.

    Google Scholar 

  8. Fritz H, Tschesche H, Greene LJ, Truscheit E (eds) Proteinase inhibitors. Springer-Verlag, New York 1974.

    Google Scholar 

  9. Troll W, Klassen A, Janoff A: Tumorigenesis in mouse skin: Inhibition by synthetic inhibitors of proteases. Science (169): 1211–1213, 1970.

    PubMed  CAS  Google Scholar 

  10. Matsushima T, Kakizoe T, Kawachi T, Hara K, Sugimura T, Takeuchi T, Umezawa H: Effects of protease inhibitors of microbial origin on experimental carcinogenesis. In: Magee PN, Takayama S, Sugimura T, Matsushima T (eds) Fundamentals in cancer prevention. University Park Press, Baltimore, 1976, pp 57–69.

    Google Scholar 

  11. Janoff A, Klassen A, Troll W: Local vascular changes induced by the cocarcinogen, phorbol myristate acetate. Cancer Res (30): 2568–2671, 1970.

    PubMed  CAS  Google Scholar 

  12. Belman S: Unpublished observation.

    Google Scholar 

  13. Slaga TJ, Klein-Szanto AJP, Fischer SM, Weeks CE, Nelson K, Major S: Studies on mechanism of action of anti-tumor -promoting agents: Their specificity in two-stage promotion. Proc Natl Acad Sci USA (77): 2251–2254, 1980.

    PubMed  CAS  Google Scholar 

  14. Goto M, Iguchi Y, Ozawa H, Sato H: Change of polyamine content in mouse skin by leupeptin, a protease inhibitor, during early stage of tumorigenesis. Gann (71): 18–23, 1980.

    PubMed  CAS  Google Scholar 

  15. Kakizoe T, Esumi H, Kawachi T, Sugimura T, Takeuchi T, Umezawa H: Further studies on the effect of leupeptin, a protease inhibitor, on induction of bladder tumors in rats by N-butyl-N-(4-hydroxybutyl)nitrosamine. J Natl Cancer Inst (59): 1503–1508, 1977.

    PubMed  CAS  Google Scholar 

  16. Kakizoe T, Matsukura N, Aoyagi M, Kawachi T, Sugimura T: Effect of simultaneous administration of leupeptin on induction of bladder tumors in rats by (N-butyl-N-4-hydroxybutyl)nitrosamine. Gann (71): 138–140, 1980.

    PubMed  CAS  Google Scholar 

  17. Kakizoe T, Sano T, Kawachi T, Sugimura T, Takeuchi T, Umezawa H: Effect of leupeptin on induction of lymphoblastic leukemia in mice by N-nitrosobutylurea. Gann (68): 282–285, 1977.

    Google Scholar 

  18. Yamamura M, Nakamura M, Fukui Y, Takamura C, Yamamoto M, Minato Y, Tamura Y, Fuji S: Inhibition of 7,12-dimethylbenz a anthracene-induced mammary tumorigenesis in rats by a synthetic protease inhibitor, [N,N-dimethylamino-p-(p’-guanidobenzoyloxyl) benzilcarbonyloxy] glycolate. Gann (69): 749–752, 1978.

    PubMed  Google Scholar 

  19. Corasanti JG, Hobika GH, Markus G: Interference with dimethylhydrazine induction of colon tumors in mice by ε-aminocaproic acid. Science (216): 1020–1021, 1982.

    PubMed  CAS  Google Scholar 

  20. Hosaka S, Hirono I: Effect of leupeptin, a protease inhibitor, on the development of spontaneous tumors in strain A mice. Gann (71): 913–917, 1980.

    PubMed  CAS  Google Scholar 

  21. Becker FF: Inhibition of spontaneous hepatocarcinogenesis in C3H/HeN mice by Edi Pro A, an isolated soy protein. Carcinogenesis (2): 1213–1214, 1981.

    PubMed  CAS  Google Scholar 

  22. Troll W, Witz G, Goldstein B, Stone D, Sugimura T: The role of free oxygen radicals in tumor promotion and carcinogenesis. In: Hecker E, Kunz W, Fusenig NE, Marks F, Thielmann Hw (eds) Cocarcinogenesis and biological effects of tumor promoters. Carcinogenesis Vol. 7, Raven Press, New York, 1982, pp 593–579.

    Google Scholar 

  23. Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K: L-trans-Epoxysuccinyl-leucylamido (4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H, and L. Biochem J (201): 189–198, 1982.

    PubMed  CAS  Google Scholar 

  24. Brown WE, Wold F: Alkyl isocyanates as active-site-specific reagents for serine proteases. Reactive properties. Biochem (121): 828–840, 1973.

    Google Scholar 

  25. Beeley JG, Neurath H: The reaction of trypsin with bromoacetone. Biochem (71): 1239–1251, 1968.

    Google Scholar 

  26. Husain SS, Lowe G: The location of the active-site histidine residue in the primary sequence of papain. Biochem J (108): 861–866, 1968.

    PubMed  CAS  Google Scholar 

  27. Husain SS, Lowe G: Evidence for histidine in the active site of papain. Biochem J (108): 855–859, 1968.

    PubMed  CAS  Google Scholar 

  28. Husain, SS, Lowe G: Evidence for histidine in the active sites of ficin and stem-bromelain. Biochem J (110): 53–57, 1968.

    PubMed  CAS  Google Scholar 

  29. Yavelow J, Finley TH, Kennedy AR, Troll W: Bowman-Birk soybean protease inhibitor as an anticarcinogen. Cancer Res (43): 2454s-2459s, 1983.

    PubMed  CAS  Google Scholar 

  30. Dermer GB: Human cancer research. Science (221): 318, 1983.

    PubMed  CAS  Google Scholar 

  31. Borek C, Miller R, Pain C, Troll W: Conditions for inhibiting and enhancing effects of the protease inhibitor antipain on X-ray-induced neoplastic transformation in hamster and mouse cells. Proc Natl Acad Sci USA (76): 1800–1803, 1979.

    PubMed  CAS  Google Scholar 

  32. Kennedy AR, Little JB: Effects of protease inhibitors on radiation transformation in vitro. Cancer Res (41): 2103–2108, 1981.

    PubMed  CAS  Google Scholar 

  33. Beard CR, Rutledge-Freeman N, Miller RC, Borek C: Antipain and radiation effects on oncogenic transformation and sister chromatid exchange in Syrian hamster embryo and mouse C3H/10T1/2 cells. Carcinogenesis (2): 1229–1233, 1981.

    Google Scholar 

  34. Di Paolo JA, Amsbaugh SC, Popescu NC: Antipain inhibits N-methyl-N’-nitro-N-nitrosoguanidine-induced transformation and increases chromosomal aberrations. Proc Natl Acad Sci USA (77): 6649–6653, 1980.

    Google Scholar 

  35. Kuroki T, Devron C: Inhibition of chemical transformation in C3H/10T1/2 cells by protease inhibitors. Cancer Res (39): 2755–2761, 1979.

    PubMed  CAS  Google Scholar 

  36. Kennedy AR, Weichselbaum RR: Effects of 17ß-estradiol on radiation transformation in vitro: inhibition of effects of protease inhibitors. Carcinogenesis (2): 67–69, 1981.

    PubMed  CAS  Google Scholar 

  37. Kennedy A: Personal communication.

    Google Scholar 

  38. Kennedy AR, Little JB: Protease inhibitors suppress radiation-induced malignant transformation in vivo. Nature (276): 825–826, 1978.

    PubMed  CAS  Google Scholar 

  39. O’Donnell-Tormey J, Quigley JP: Inhibition of plasminogen activator release from transformed chicken fibroblasts by a protease inhibitor. Cell (27): 85–95, 1981.

    PubMed  Google Scholar 

  40. Whur P, Robson RT, Payne NE: Effect of a protease inhibitor on the adhesion of Ehrlich ascites cells to host cells in vivo. Br J Cancer (28): 417–428, 1973.

    PubMed  CAS  Google Scholar 

  41. Latner AL, Longstaff E, Turner GA: Anti-tumor activity of aprotinin. Br J Cancer (30): 60–67, 1974.

    PubMed  CAS  Google Scholar 

  42. Latner AL, Turner GA: Effect of aprotinin on immunological resistance in tumour-bearing animals. Br J Cancer (33): 535–538, 1976.

    PubMed  CAS  Google Scholar 

  43. Thompson AW, Pugh-Humphries RGP, Home CHW, Tweedie DJ: Aprotinin and growth of Walker 256 carcinosarcoma in the rat. Br J Cancer (35): 454–460, 1977.

    Google Scholar 

  44. Giraldi T, Nisi C, Sava G: Lysosomal enzyme inhibitors and antimetastatic activity in the mouse. Eur J Cancer (13): 1321–1323, 1977.

    PubMed  CAS  Google Scholar 

  45. Back N, Steger R: Effect of aprotinin, EACA, and heparin on growth and vasopeptide system of Murphy-Sturm lymphosarcoma. Eur J Pharmacol (38): 313–319, 1976.

    CAS  Google Scholar 

  46. Turner GA, Weiss L: Analysis of aprotinin-induced enhancement of Lewis lung tumors in mice. Cancer Res (41): 2576–2580, 1981

    PubMed  CAS  Google Scholar 

  47. Ohkoshi M, Fuji S: Effect of oral administration of protease inhibitor [N,N-dimethyl-carbamoylmethyl 4-(4-guanidinobenzoyloxyl)-phenylacetate] methanesulfonate on the growth of 3-methylcholanthrene-induced carcinomas in mice. Gann (73): 108–110, 1982.

    PubMed  CAS  Google Scholar 

  48. Ohkoshi M: Effect of aprotinin on growth of 3-methyl-cholanthrene-induced squamous cell carcinoma in mice. Gann (71): 246–250, 1980.

    PubMed  CAS  Google Scholar 

  49. Greenbaum LM, Esumi H, Sato S: Further studies of the effect of pepstatin on ascites accumulation in tumor-bearing mice. Cancer Lett (7): 91–96, 1979.

    PubMed  CAS  Google Scholar 

  50. Pietras RJ: Heritable membrane alterations and growth associated with enhanced leupeptin-sensitive proteinase activity in epithelial cells exposed to dibutylnitrosamine in vitro. Cancer Res (38): 1019–1030, 1978.

    PubMed  CAS  Google Scholar 

  51. Harms-Ringdahl M, Forsberg J, Fedorcsak I, Ehrenberg L: Trypsin inhibitory activity of a polypeptide isolated from red kidney beans, that also enhances lymphocyte stimulation. Biochem Biophys Res Commun (86): 492–499, 1979.

    PubMed  CAS  Google Scholar 

  52. Saito M, Aoyagi T, Umezawa H, Nagai Y: Bestatin, a new specific inhibitor of aminopeptidases, enhances activation of small lymphocytes by concanavalin A. Biochem Biophys Res Commun (76): 526–533, 1977.

    CAS  Google Scholar 

  53. Little JB, Nagasawa H, Kennedy AR: DNA repair and malignant transformation: effect of X-irradiation, 12-0-tetradecanoyl-phorbol-13-acetate, and protease inhibitors on transformation and sister-chromatid exchange in mouse 10T1/2 cells. Radiat Res (79): 241–255, 1979.

    PubMed  CAS  Google Scholar 

  54. Kinsella AR, Radman M: Inhibition of carcinogen-induced chromosomal aberrations by an anticarcinogenic protease inhibitor. Proc Natl Acad Sci USA (77): 3544–3547, 1980.

    PubMed  CAS  Google Scholar 

  55. Marsh WH, Parsa I: Antiproteases and arrest of pancreatic differentiation. Fed Proc (37): 1699, 1978.

    Google Scholar 

  56. Long CW, Bruszewski JA, Christensen WL, Suk WA: Effects of protease inhibitors on chemical induction of Type C virus. Cancer Res (39): 2995–2999, 1979.

    PubMed  CAS  Google Scholar 

  57. Hellman KB, Brewer PP, Twardzik DR, Hellman A: Protease inhibitors modify induction of endogenous Type C oncornavirus (41019). Proc Soc Exp Biol Med (166): 28–34 1981.

    PubMed  CAS  Google Scholar 

  58. Kawanishi M, Ito Y: Similarity of Epstein-Barr virus early polypeptides induced by various tumor promoters. Cancer Lett (16): 18–23, 1982.

    Google Scholar 

  59. Borek C, Cleaver JE: Protease inhibitors neither damage DNA nor interfere with DNA repair or replication in human cells. Mutat Res (82): 376–380, 1981.

    Google Scholar 

  60. Takeda H, Ishizaki K: High sensitivity of Xeroderma Pigmentosum cells to antipain, a protease inhibitor. Proc Japan Cancer Assoc (11): 13, 1978.

    Google Scholar 

  61. Katz J, Troll W, Genunchi A, Levitz M: Prevention of normal mouse uterine maturation by antipain and elastatinal: suppression of peroxidase activity. Endocrine Res (5): 325–335, 1978.

    CAS  Google Scholar 

  62. Meyn MS, Rossman T, Troll W: A protease inhibitor blocks SOS functions in Escherichia Coli: antipain prevents repressor inactivation, ultraviolet mutagenesis, and filamentous growth. Proc Natl Acad Sci USA (74): 1152–1156, 1977.

    PubMed  CAS  Google Scholar 

  63. Little JW, Edmiston SH, Pacelli LZ, Mount DW: Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci USA (77): 3225–3229, 1980.

    PubMed  CAS  Google Scholar 

  64. Marx JL: Do tumor promoters affect DNA after all? Science (219): 158–159, 1983.

    PubMed  CAS  Google Scholar 

  65. Oberley LW, Oberley TD, Buettner GR: Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses (7): 21–42, 1981.

    PubMed  CAS  Google Scholar 

  66. Totter JR: Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci USA (77): 1763–1767, 1980.

    PubMed  CAS  Google Scholar 

  67. Oberley LW, Buettner GR: Role of superoxide dismutase in cancer: a review. Cancer Res. (39): 1141–1149, 1979.

    Google Scholar 

  68. Bannister JV, Hill HAO (eds) Chemical and biochemical aspects of superoxide and superoxide dismutase. Developments in Biochemistry, Vol 11A, Elsevier/North Holland, New York, 1980.

    Google Scholar 

  69. Bannister WH, Bannister JV (eds) Biological and clinical aspects of superoxide and superoxide dismutase. Developments in Biochemistry, Vol. 11B, Elsevier/North Holland, New York, 1980.

    Google Scholar 

  70. Repine JE, White JG, Clawson CC, Holmes BM: Effects of phorbol myristate acetate on the metabolism and ultrastructure of neutrophils in chronic granulomatous disease. J Clin Invest (54): 83–90, 1974.

    PubMed  CAS  Google Scholar 

  71. DeChatelet LR, Shirley PS, Johnston, Jr., RB: Effect of phorbol myristate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood (47): 545–554, 1976.

    PubMed  CAS  Google Scholar 

  72. Golstein IM: Effects of phorbol esters on polymorphonuclear leukocyte functions in vitro. In: Slaga TJ, Sivak A, Boutwell RK (eds) Carcinogenesis, Vol. 2. Mechanisms of tumor promotion and cocarcinogenesis. Raven Press, New York, 1978, pp 389–400.

    Google Scholar 

  73. Badway JA, Curnutte JT, Robinson JM, Lazduns JK, Briggs RT, Karnovsky MJ, Karnovsky ML: Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases. J Cell Physiol (105): 541–551, 1980.

    Google Scholar 

  74. Pick E, Keisari Y, Bromberg Y, Freund M, Yakerbowski A: Effect of tumor promoters in immunological systems-The macrophage as a target cell for the action of phorbol esters. In. Hecker E, Kunz W, Fusenig NE, Marks F, Thielmann HW, (eds) Cocarcinogenesis and biological effects of tumor promoters, cocarcinogenesis, a comprehensive survey, Vol. 7, Raven Press, New York, 1982, pp 625–635.

    Google Scholar 

  75. Birnboim HC: DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol myristate acetate. Science (215): 1247–1249, 1982.

    PubMed  CAS  Google Scholar 

  76. Emerit I, Cerutti PA: Tumour promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action. Nature (293): 144–146, 1981.

    PubMed  CAS  Google Scholar 

  77. Clark RA, Stone PJ, Hag AE, Calore JD, Franzblow C: Myloperoxidase-catalyzed inactivation of al — protease inhibitor by human neutrophils. J Biol Chem (256): 3348–3353, 1981.

    PubMed  CAS  Google Scholar 

  78. Kitagawa S, Takaku F, Sukamoto S: Evidence that proteases are involved in superoxide production by human polymorphonuclear leukocytes and monocytes. J Clin Invest (65): 74–81, 1980.

    PubMed  CAS  Google Scholar 

  79. Duque RF, Phan SH, Sulavik MC, Ward PA: Effect of protease inhibitors on depolarization of the transmembrane potential in rat neutrophils. Correlation with superoxide generation and enzyme release. Fed Proc (42): 385, 1983.

    Google Scholar 

  80. Kensler TW, Trush MA: Inhibition of oxygen radical metabolism in phorbol ester-activated polymorphonuclear leukocytes by an antitumor promoting copper complex with superoxide dismutase-mimetic activity. Biochem Pharmacol in press.

    Google Scholar 

  81. Yavelow J, Gidlund M, Troll W: Protease inhibitors from processed legumes effectively inhibit superoxide generation in response to TPA. Carcinogenesis (3): 135–138, 1982.

    PubMed  CAS  Google Scholar 

  82. Slaga TJ, Klein-Szanto AJP, Triplett LL, Totti LP, Trosko JE: Skin tumor-promoting activity of benzoyl peroxide,a widely used free radical-generating compound. Science (213): 1023–1025, 1981.

    PubMed  Google Scholar 

  83. Ito A, Watanabe H, Naito M, Naito Y: Induction of duodenal tumors in mice by oral administration of hydrogen peroxide. Gann (72): 174–175, 1981.

    PubMed  CAS  Google Scholar 

  84. Solanki V, Rana RS, Slaga TJ: Diminution of mouse epidermal superoxide dismutase and catalase activities by tumor promoters. Carcinogenesis (2): 1141–1146, 1981.

    PubMed  CAS  Google Scholar 

  85. Logani MK, Solanki V, Slaga TJ: Effect of tumor promoters on lipid peroxidation in mouse skin. Carcinogenesis (3): 1303–1306, 1982.

    PubMed  CAS  Google Scholar 

  86. Kensler TW, Bush DM, Kozumbo WJ: Inhibition of tumor promotion by a biomimetic superoxide dismutase. Science (221): 75–77, 1983.

    PubMed  CAS  Google Scholar 

  87. Leuthauser SWC, Oberley LW, Oberley TD, Sorenson JRJ, Ramakrishna K: Antitumor effect of a copper coordination compound with superoxide dismutase-like activity. J Natl Cancer Inst (66): 1077–1081, 1981.

    PubMed  CAS  Google Scholar 

  88. Hoffman M, Autor AP: Effect of cyclooxygenase inhibitors on phorbol-induced stimulation of oxygen consumption and superoxide production by rat pulmonary macrophages. Biochem Pharmacol (31): 775–780, 1982.

    PubMed  CAS  Google Scholar 

  89. Kinsella AR, Gainer HST, Butler J: Investigation of a possible role for superoxide anion production in tumor promotion. Carcinogenesis (4): 717–719, 1983.

    PubMed  CAS  Google Scholar 

  90. Carp H, Janoff A: In vitro suppression of serum elastase-inhibitor capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J Clin Invest (63): 793–797, 1979.

    PubMed  CAS  Google Scholar 

  91. Hopsu-Havu VK, Fraki JE, Jarvinen M: Proteolytic enzymes in the skin. In: Barrett AJ (ed) Proteinases in mammalian cells and tissues. North-Holland Publ., New York, 1979, pp 545–591.

    Google Scholar 

  92. Fukuyama K, Ohtani O, Hibino T, Epstein WL: Cellular localization of thiol-protease inhibitor in the epidermis of the new born rat. Cell Tissue Res (223): 313–323, 1982.

    PubMed  CAS  Google Scholar 

  93. Shamberger RJ, Rudolph G: Increase of lysosomal enzymes in skin cancer. Nature (213): 617–618, 1967.

    PubMed  CAS  Google Scholar 

  94. Brown RL, Clark RW, Chiu J-F, Stubblefield E: Protease activation of Gl nuclei isolated from Chinese hamster fibroblasts. Exp Cell Res (104): 207–213, 1977.

    PubMed  CAS  Google Scholar 

  95. Harris CC, Primek A, Cohen MH: Elevated alpha1 -- antitrypsin serum levels in lung cancer patients. Cancer Res (34): 280–281, 1974.

    CAS  Google Scholar 

  96. Chawla RK, Wadswork AD, Rudman D: Relation of the urinary cancer-related glycoprotein EDCl to plasma inter-Al -trypsin inhibitor. J Immunol (121): 1636–1639, 1978.

    PubMed  CAS  Google Scholar 

  97. Gaffar SA, Princier GL, Mclntire KR, Braatz JA: A human lung tumor-associated antigen cross-reactive with al-antichymotrypsin. J Biol Chem (255): 8334–8339, 1981.

    Google Scholar 

  98. Kelly UL, Cooper EH, Alexander C, Stone J: The assessment of antichymotrypsin in cancer monitoring. Biomedicine (Paris) (28): 209–215, 1978.

    CAS  Google Scholar 

  99. Kondo Y, Ohsawa N: Production of human αl-antichymotrypsin-like protein by a human malignant melanoma transplanted into nude mice. Cancer Res (42): 1549–1554, 1982.

    PubMed  CAS  Google Scholar 

  100. Weissmann G, Korchak HM, Perez HD, Smolen JE, Goldstein IM, Hoffstein ST: Leukocytes as secretory organs of inflammation. In: Weissmann G, Samuelsson B, Paoletti R: (eds) Advances in inflammation research, Vol. 1, Raven Press, New York, 1978, pp 95–112.

    Google Scholar 

  101. Powles TJ, Bockman RS, Honn KV, Ramwell P: (eds) Prostaglandins and cancer: First Internation Conference. Alan R. Liss, New York, 1982.

    Google Scholar 

  102. Samuelsson B, Paoletti R: (eds) Advances in prostaglandin, thromboxane, and leukotriene research series, Vol. 9, Raven Press, New York, 1982.

    Google Scholar 

  103. Nakadata T, Yamamoto S, Iseki H, Sonoda S, Takemura S, Ura A, Hosoda Y, Kato R: Inhibition of 12-0-tetradecanoyl -phorbol-13-acetate-induced tumor promotion by nordihydroguaiaretic acid, a lipoxygenase inhibitor, and p-bromophenylacyl bromide, a phosholipase A2 inhibitor. Gann (73): 841–843, 1982.

    Google Scholar 

  104. Levine L: Arachidonic acid transformation and tumor production. Adv Cancer Res (35): 49–79, 1982.

    Google Scholar 

  105. Belman S, Troll W: Hormones, cyclic nucleotides, and prostaglandins. In: Slaga TJ, Sivak A, Boutwell RK (eds) Carcinogenesis Vol. 2, Mechanisms of tumor promotion and cocarcinogenesis. Raven Press, New York, 1978, pp 117–134.

    Google Scholar 

  106. Chang J, Wigley F, Newcombe D: Neutral protease activation of peritoneal macrophage prostaglandin synthesis. Proc Natl Acad Sci USA (77): 4736–4740, 1980.

    PubMed  CAS  Google Scholar 

  107. Hatcher VB, Wertheim MS, Rhee CY, Tsien G, Burk PG: Relationship between cell surface protease activity and doubling time in various normal and transformed cells. Biochim Biophys Acta (451): 499–510, 1976.

    PubMed  CAS  Google Scholar 

  108. Hatcher VB, Oberman MS, Wertheim MS, Rhee CY, Tsien G, Burk PG: The relationship between surface activity and the rate of cell proliferation in normal and transformed cells. Biochem Biophys Res Commun (76): 602–608, 1977.

    CAS  Google Scholar 

  109. Markus G, Takita H, Camiolo SM, Corasanti JG, Evers JL, Hobika GH: Content and characterization of plasminogen activators in human lung tumors and normal lung tissue. Cancer Res (40): 841–848, 1980.

    PubMed  CAS  Google Scholar 

  110. Moscattelli D, Jaffe E, Rifkin DB: Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell (20): 343–351, 1980.

    Google Scholar 

  111. Reich E: Activation of plasminogen: A widespread mechanism for generating localized extracellular proteolysis. In: Ruddon RW (ed) Biological markers of neoplasia: Basic and applied aspects. Elsevier publ., New York, 1978, pp 491–500.

    Google Scholar 

  112. Long SD, Quigley JP, Troll W, Kennedy AR: Protease inhibitor antipain suppresses 12-0-tetradecanoyl-phorbol-13-acetate induction of plasminogen activator in transformable mouse embryo fibroblasts. Carcinogenesis (2): 933–936, 1981.

    PubMed  CAS  Google Scholar 

  113. Sloane BF, Dunn JR, Honn KV: Lysosomal cathepsin B: Correlation with metastatic potential. Science (212): 1151–1153, 1981.

    PubMed  CAS  Google Scholar 

  114. Honn KV, Cavanaugh P, Evens C, Taylor JD, Sloane BF: Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science (217): 540–542, 1982.

    PubMed  Google Scholar 

  115. Hornback W, Brechmier D, Bellon G, Adnet JJ, Robert L: Biological significance of elastase-like enzymes in arteriosclerosis and human breast cancer. In: Strauli P, Barrett AJ, Baici A (eds) Proteinases and tumor invasion, Raven Press, 1980, pp 117–141.

    Google Scholar 

  116. Mott DM, Fabisch PH, Sani BP, Sorof S: Lack of correlation between fibrinolysis and the transformed state of cultured mammalian cells. Biochem Biophys Res Commun (61): 621–627, 1974.

    PubMed  CAS  Google Scholar 

  117. Plagemann PGW, Estensen RD: Lack of correlation between effects of tumor promoter TPA on plasminogen activator production, phosphatidyl choline synthesis, and hexose transport in mammalian cell culture systems. J Cell Physiol (104): 105–110, 1980.

    PubMed  CAS  Google Scholar 

  118. Brynes PJ, Schmidt R, Hecker E: Plasminogen activator induction and platelet aggregation by phorbol and some of its derivatives: Correlation with skin irritancy and tumor-promoting activity. J Cancer Res Clin Oncol (97): 257–266, 1980.

    PubMed  CAS  Google Scholar 

  119. Wilson EL, Jacobs P, Dowdle EB: The effects of dexamethasone and tetradecanoyl phorbol acetate on plasminogen activator release by human acute myeloid leukemia cells. Blood (61): 561–566, 1983.

    PubMed  CAS  Google Scholar 

  120. Weinstein IB, Mufson RA, Lee L-S, Fisher PB, Laskin J, Horowitz AD, Ivanovik V: Membrane and other biochemical effects of the phorbol esters and their relevance to tumor promotion. In: Pullman B, Ts’O POP, Gelboin H (eds) Carcinogenesis: Fundamental mechanisms and environmental effects. D. Reidei Publ. Co., Boston, 1980, pp 543–563.

    Google Scholar 

  121. Jaken S, Black PH: Regulation of plasminogen activator in 3T3 cells: Effect of phorbol myristate acetate on subcellular distribution and molecular weight. J Cell Biol (90): 727–731, 1981.

    PubMed  CAS  Google Scholar 

  122. Wigler M, Defeo D, Weinstein IB: Induction of plasminogen activator in cultured cells by macrocyclic plant diterpene esters and other agents related to tumor promotion. Cancer Res (38): 1434–1437, 1978.

    PubMed  CAS  Google Scholar 

  123. Dolbeare F: Enzyme responses to tumor promoters: Cathepsin B induction in 10T1/2 cells. Proc Amer Assoc Cancer Res (20): 180, 1979.

    Google Scholar 

  124. Recklies AD, Mort JS, Poole AR: Secretion of a thiol proteinase from mouse mammary carcinomas and its characterization. Cancer Res (42): 1026–1032, 1982.

    PubMed  CAS  Google Scholar 

  125. Steven FS, Griffin MM, Itzhaki S, Al-Habib A: A trypsin-like neutral protease on Ehrlich ascites cell surfaces: Its role in the activation of tumour-cell zymogen of collagenase. Br J Cancer (42): 712–721, 1980.

    PubMed  CAS  Google Scholar 

  126. Tarin D, Hoyt BJ, Evans DJ: Correlation of collagenase secretion with metastatic-colonization potential in naturally occurring murine mammary tumours. Br J Cancer (46): 266–278, 1982.

    PubMed  CAS  Google Scholar 

  127. Brinckerhoff CE, Harris Jr. ED: Modulation by retinoic acid and corticosteroids of collagenase production by rabbit synovial fibroblasts treated with phorbol myristate acetate or poly (ethylene glycol). Biochim Biophys Acta (677): 424–432, 1981.

    PubMed  CAS  Google Scholar 

  128. Brinckerhoff CE, McMillan RM, Fahey JV, Harris Jr. ED: Collagenase production by synovial fibroblasts treated with phorbol myristate acetate. Arthritis Rheum (22): 110–116, 1979.

    Google Scholar 

  129. Brinckerhoff CE, Gross RH, Nagasa H, Sheldon L, Jackson RC, Harris Jr. ED: Increased level of translatable collagenase messenger ribonucleic acid in rabbit synovial fibroblasts treated with phorbol myristate acetate or crystals of monosodium urate monohydrate. Biochem (21): 2674–2679, 1982.

    CAS  Google Scholar 

  130. Dahlgren ME, Davies P, Bonney RJ: Phorbol myristate acetate induces the secretion of an elastase by populations of resident and elicited mouse peritoneal macrophages. Biochim Biophys Acta (630): 338–351, 1980.

    PubMed  CAS  Google Scholar 

  131. Zucker MB, Troll W, Belman S: The tumor-promoter phorbol ester (12-0-tetradecanoyl-phorbol-13-acetate), a potent aggregating agent for blood platelets. J Cell Biol (60): 325–336, 1974.

    PubMed  CAS  Google Scholar 

  132. Pearlstein E, Ambrogio C, Gasic G, Karpatkin S: Inhibition of the platelet-aggregating activity of two human adenocarcinomas of the colon and an anaplastic murine tumor with a specific thrombin inhibitor, dansylarginine N-(3-ethyl-l,5-pentanediyl) amide. Cancer Res (41): 4535–4539, 1981.

    PubMed  CAS  Google Scholar 

  133. Dabbous MKH, El-Torky M, Haney L, Brinkley Sr. B: Stimulation of collagenase release by rabbit carcinoma-derived cells. Proc Amer Assoc Cancer Res (24): 4, 1983.

    Google Scholar 

  134. Tarin D, Ogolvie DJ, McKinnell RG: Temperature-dependent elevation of collagenase by the renal adenocarcinoma of the leopard frog. Proc Amer Assoc Cancer Res (24): 26, 1983.

    Google Scholar 

  135. DiStefano JF, Beck G, Zucker S: Cancer cell membrane proteases in invasion and normal cell destruction. Proc Amer Assoc Cancer Res (24): 27, 1983.

    Google Scholar 

  136. Starkey JR, Hosick HL, Young DM: Comparison of basement membrane (BM) degradation and digestion of purified matrix components as correlates with metastatic/invasion behaviour of tumor cells. Proc Amer Assoc Cancer Res (24): 27, 1983.

    Google Scholar 

  137. Quigley JP: Morphological alterations and degradative ability of RSV-transformed chick fibroblasts when cultured in the extracellular matrix produced by normal chick fibroblasts. Proc Amer Assoc Cancer Res (24): 29, 1983.

    Google Scholar 

  138. Wang BS, McLoughlin GA, Richie JP, Mannick JA: Correlation of the production of plasminogen activator with tumor metastasis in B16 mouse melanoma cell lines. Cancer Res (40): 288–292, 1980.

    PubMed  CAS  Google Scholar 

  139. Davies RL, Rifkin DB, Tepper R, Miller A, Kucherplati R: A polypeptide secreted by transformed cells that modulates human plasminogen activator function. Science (221): 171–173, 1983.

    PubMed  CAS  Google Scholar 

  140. LeBlanc PP, Back N: Proteases during growth of Ehrlich ascites tumor. I. The fibrinolytic system. J Natl Cancer Inst (54): 881–886, 1975.

    PubMed  CAS  Google Scholar 

  141. Glenn KC, Carney DH, Fenton II JW, Cunningham DD: Thrombin active site regions required for fibroblast receptor binding and initiation of cell division. J Biol Chem (255): 6609–6616, 1980.

    PubMed  CAS  Google Scholar 

  142. Jaken S, Black PH: Correlation between a specific molecular weight form of plasminogen activator and metabolic activity of 3T3 cells. J Cell Biol (90): 721–726, 1981.

    PubMed  CAS  Google Scholar 

  143. Crutchley DJ, Conanan LB, Maynard JR: Induction of plasminogen activator and prostaglandin biosynthesis in Hela cells by 12-0-tetradecanoylphorbol-13-acetate. Cancer Res (40): 849–852, 1980.

    PubMed  CAS  Google Scholar 

  144. Wilson EL, Reich E: Plasminogen activator in chick fibroblasts: Induction of synthesis by retinoic acid; synergism with viral transformation and phorbol ester. Cell (15): 385–392, 1978.

    PubMed  CAS  Google Scholar 

  145. Crutchley DJ, Maynard JR: Induction of plasminogen activator by 12-0-tetradecanoylphorbol-13-acetate and calcium ionophore. Biochim Biophys Acta (762): 76–85, 1983.

    PubMed  CAS  Google Scholar 

  146. Dawamura H, Strickland JE, Yuspa SH: Inhibition of 12-0-tetradecanoylphorbol-13-acetate induction of epidermal transglutaminase activity by protease inhibitors. Cancer Res (43): 4073–4077, 1983.

    Google Scholar 

  147. Boynton AL, Whithead JF: The role of cyclic AMP in cell proliferation: A critical assessment of the evidence. Adv Cyc Nuc Res (15): 193–195, 1983.

    CAS  Google Scholar 

  148. Goldberg ND, Haddox MK, Nicol SE, Glass DB, Sanford CH, Kuehl FA, Estensen, R: Biological regulation through opposing influences of cyclic GMP and cyclic AMP: The yin yang hypothesis. Adv Cyc Nuc Res (15): 307–330, 1975.

    Google Scholar 

  149. Halprin KM: Cyclic nucleotides and epidermal cell proliferation. J Invest Derm (66): 339–343, 1976.

    PubMed  CAS  Google Scholar 

  150. Ross EM, Gilman AG: Biochemical properties of hormone sensitive adenylate cyclase. Ann Rev Biochem (49):533–564, 1980.

    PubMed  CAS  Google Scholar 

  151. Exton JH, Harper SC: Role of cyclic AMP in the action of catecholamines on hepatic carbohydrate metabolism. Adv Cyc Nuc Res (5):519–532, 1975.

    CAS  Google Scholar 

  152. Samuelsson B, Granstrom E, Green K, Hamburg M, Hammarstrom S: Prostaglandin. Ann Rev Biochem (44): 669–695, 1975.

    CAS  Google Scholar 

  153. Nimmo HG: Hormonal control of protein phosphorylation. Adv Cyc Nue Res (8): 145–266, 1977.

    CAS  Google Scholar 

  154. Walsh DA: Role of the cAMP-dependent protein kinase s the transducer of cAMP action. Biochem Pharmacol (27):1801–1804, 1978.

    PubMed  CAS  Google Scholar 

  155. Lincoln TM, Corbin JD: Characterization and biological role of the cGMP dependent protein kinase. Biochem Pharmacol (27):139–192, 1978.

    Google Scholar 

  156. Russell DH: Type I cyclic AMP dependent protein kinase as a positive effector of growth. Adv Cyclic Nuc Res (9):493–506, 1978.

    CAS  Google Scholar 

  157. Ryan WL, Heidrick ML: Role of cyclic nucleotides in cancer. Adv Cyclic Nuc Res (4):81–116, 1974.

    CAS  Google Scholar 

  158. Van Duuren BL: Tumor-promoting agents in two-stage carcinogenesis. Prog Exp Tumor Res (11):31–58, 1969.

    PubMed  Google Scholar 

  159. Hecker E: Phorbol esters from croton oil, chemical nature and biological activities. Naturwissen-Schaften (54):282–284, 1967.

    CAS  Google Scholar 

  160. Rohrschneider LR, Boutwell RK: Phorbol esters, fatty acids and tumor promotion. Nature (243): 212–213, 1973.

    CAS  Google Scholar 

  161. Sivak A, Ray F, Van Duuren BL: Phorbol ester tumor-promoting agents and membrane stability. Cancer Res (29):624–630, 1969.

    PubMed  CAS  Google Scholar 

  162. O’Brien TG: The induction of ornithine decarboxylase as an early possible obligatory event in mouse skin carcinogenesis. Cancer Res (36): 2644–2653, 1976.

    PubMed  Google Scholar 

  163. O’Brien TG, Simsiman RC, Boutwell RK: Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res (35): 2426–2433, 1975.

    PubMed  Google Scholar 

  164. Byus CV, Russell DH: Ornithine decarboxylase activity: Control by cyclic nucleotides. Science (187):650–652, 1975.

    PubMed  CAS  Google Scholar 

  165. Mufson RA, Astrup EG, Simsiman RC, Boutwell RK: Dissociation of increases in levels of 3’5’ cyclic AMP and 3’5’ cyclic GMP from induction of ornithine decarboxylase by the tumor promoter 12-0-tetradecanoyl phorbol-13 acetate in mouse epidermis in vivo. Proc Natl Acad Sci USA (74):657–661, 1977.

    PubMed  CAS  Google Scholar 

  166. Trevillyan JM, Byus CV: Cyclic AMP and tumor promoters cause differential induction of ornithine decarboxylase and accumulation of putrescine in Chinese hamster ovary cells deficient in cyclic AMP-dependent protein kinase. Biochim Biophys Acta (762): 187–197, 1983.

    PubMed  CAS  Google Scholar 

  167. Lichti U, Gottesman HM: Genetic evidence that a phorbol ester tumor promoter stimulates ornithine decarboxylase activity by a pathway that is independent of cyclic AMP-dependent protein kinases in CHO cells. J Cell Physiol (113): 433–439, 1982.

    PubMed  CAS  Google Scholar 

  168. Belman S, Troll W: Phorbol 12-myristate 13-acetate effect on cyclic adenosine 3’,5’-monophosphate levels in mouse skin and inhibition of phorbol myristate acetate-promoted tumorigenesis by theophylline. Cancer Res (34):3446–3455, 1974.

    PubMed  CAS  Google Scholar 

  169. Mufson RA, Simsiman RC, Boutwell RK: The effect of the phorbol ester tumor promoters on the basal and catecholamine-stimulated levels of cyclic adenosine 3’,5’-monophosphate in mouse skin and epidermis in vivo. Cancer Res (37): 665–669, 1977.

    PubMed  CAS  Google Scholar 

  170. Yoshikawa K, Adachi K, Halprin KM, Levine V: Cyclic AMP in skin: Effects of acute ischeamia. Brit J Dermatol (92):249–254, 1975.

    CAS  Google Scholar 

  171. Solanki V, Murray AW: Decreased accumulation of cyclic adenosine 3’5’-monophosphate in “ischemic” skin after 12-0-tetradecanoyl-phorbol-13 acetate treatment. J Invest Derm (78): 264–266, 1982.

    PubMed  CAS  Google Scholar 

  172. Belman S, Troll W, Garte SJ: Effect of phorbol myristate acetate on cyclic nucleotide levels in mouse epidermis. Cancer Res (38): 2978–2982, 1978.

    PubMed  CAS  Google Scholar 

  173. Perchollet JP, Boutwell RK: Effects of 3-isobutyl-l methylxanthine and cyclic nucleotides on 12-0-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis in vivo. Cancer Res (41): 3918–3926, 1981.

    Google Scholar 

  174. Garte SJ, Belman S: Effects of multiple phorbol myri-state acetate treatments on cyclic nucleotide levels in mouse epidermis. Biochem Biophys Res Comm (84):489–494, 1978.

    PubMed  CAS  Google Scholar 

  175. Garte SJ, Belman S: Unpublished observations.

    Google Scholar 

  176. Grotendorst GR, Schimmel SD: Alteration of cyclic nucleotide levels in phorbol 12-myristate 13-acetate treated myoblasts. Biochem Biophys Res Comm (93):301–307, 1980.

    PubMed  CAS  Google Scholar 

  177. Coffey RG, Hadden JW: Phorbol myristate acetate stimulation of lymphocyte granulocyte cyclase. Biochem Biophys Res Comm (101): 584–590, 1981.

    PubMed  CAS  Google Scholar 

  178. Rochette-Egly C, Chouroulinkov I, Castagna M: Cyclic nucleotide levels in rat embryo fibroblasts treated with tumor promoting phorbol diester. J Cyclic Nuc Res (5)1385–395, 1979.

    Google Scholar 

  179. Estensen RD, Hadden JW, Hadden EM, Touraine F, Touraine JL, Haddox MK, Goldberg ND: Phorbol myristate acetate: Effects of a tumor promoter on intracellular cyclic GMP in mouse fibroblasts and as a mitogen on human lymphocytes. In: Clarkson B, Baserga R (eds) Control of proliferation in animal cells. Cold Spring Harbor, new York, 1974, pp 627–634.

    Google Scholar 

  180. Grimm W, Marks F: Effect of tumor promoters on the normal and isoproterenol elevated level of adenosine 3’5’-cyclic monophosphate in mouse epidermis in vivo. Cancer Res (34): 3128–3134, 1974.

    PubMed  CAS  Google Scholar 

  181. Murray AW, Solanki V, Verma AK: Accumulation of cyclic adenosine 3’5’-monophosphate in adult and newborn mouse skin: Response to ischaemia and isoproterenol. J Invest Dermatol (68): 125–127, 1977.

    PubMed  CAS  Google Scholar 

  182. Belman S, Garte SJ: Antagonism between phorbol myristate acetate and butyric acid on isoproterenol elevation of cyclic adenosine 3’,5’-monophosphate and their effects on 3-adrenergic receptors in mouse epidermis. Cancer Res (40): 240–244, 1980.

    PubMed  CAS  Google Scholar 

  183. Brostrom MA, Brostrom CA, Brotman LA, Lee CS, Wollf DF, Geller HM: Alterations of glial tumor cell Ca2+ meta-bolism and Ca2+-dependent cAMP accumulation by phorbol myristate acetate. J Biol Chem (257): 6758–6765, 1982.

    PubMed  CAS  Google Scholar 

  184. Rochette-Egly C, Castagna M: A tumor promoting phorbol ester inhibits the cyclic AMP response of rat embryo fibroblasts to catecholamines and prostaglandins. Febs Lett (103):38–42, 1979.

    PubMed  CAS  Google Scholar 

  185. Garte SJ, Belman S: Tumour promoter uncouples β-adrenergic receptor from adenyl cyclase in mouse epidermis. Nature (284): 171–173, 1980.

    PubMed  CAS  Google Scholar 

  186. Garte SJ, Belman S: Decreased β-adrenergic responsiveness in mouse epidermal papillomas during tumor promotion with phorbol myristate acetate. Cancer Lett (9):245–249, 1980.

    PubMed  CAS  Google Scholar 

  187. Novogrodsky A, Patya M, Rubin AL, Stenzel KH: Inhibition of by phorbol myristate acetate is mediated by activated macrophages. Biochem Biophys Res Comm (104):389–393, 1982.

    PubMed  CAS  Google Scholar 

  188. Garte SJ, Currie D, Belman S: Inhibition of ß- adrenergic response in cultured epidermal cells by phorbol myristate acetate. Carcinogenesis (4):939–940, 1983.

    PubMed  CAS  Google Scholar 

  189. Marks F, Ganss M, Grimm W: Agonist and mitogen-induced desensitization of isoproterenol-stimulated cyclic AMP formation in mouse epidermis in vivo. Biochim Biophys Acta (678):122–131, 1981.

    PubMed  CAS  Google Scholar 

  190. Mufson A, Fischer SM, Verma AK, Gleason GL, Slaga TJ, Boutwell RK: Effects of 12-0-tetradecanoyl-13-acetate and mezerein on epidermal ornithine decarboxylase activity, isoproterenol-stimulated levels of cyclic adenosine 3’:5’-monophosphate, and induction of mouse skin tumors in vivo. Cancer Res (39): 4791–4795, 1979.

    PubMed  CAS  Google Scholar 

  191. Slaga TJ, Fischer SM, Nelson K, Gleason, GL: Studies on the mechanism of skin tumor promotion: Evidence for several stages in promotion. Proc Natl Acad Sci USA (77):3659–3663, 1980.

    PubMed  Google Scholar 

  192. Furstenberger G, Berry DL, Sorg B, Marks F: Skin tumor promotion by phorbol esters is a two-stage process. Proc Natl Acad Sci (78): 7722–7726, 1981.

    PubMed  CAS  Google Scholar 

  193. Rochette-Egly C, Castagna M: A tumor-promoting phorbol ester inhibits the cyclic AMP response of rat embryo fibroblasts to catecholamines and prostaglandin E1. Febs Lett (103):38–42, 1979.

    PubMed  CAS  Google Scholar 

  194. Ashenda CL, Boutwell RK: Prostaglandin E and F levels in mouse epidermis are increased by tumor-promoting phorbol esters. Biochem Biophys Res Comm (90): 623–627, 1979.

    Google Scholar 

  195. Bresnick E, Meunier P, Lamden M: Epidermal prostaglandins after topical application of a tumor promoter. Cancer Lett (7):121–125, 1979.

    PubMed  CAS  Google Scholar 

  196. Furstenberger G, Marks F: Early prostaglandin E synthesis is an obligatory event in the induction of cell proliferation in mouse epidermis in vivo by the phorbol ester TPA. Biochem Biophys Res Comm (2):749–756, 1980.

    Google Scholar 

  197. Fischer SM, Gleason GL, Hardin LG, Bohrman JS, Slaga TJ: Prostaglandin modulation of phorbol ester skin tumor promotion. Carcinogenesis (l):245–248, 1980.

    Google Scholar 

  198. Garte SJ, Belman S: Prostaglandins fail to elevate cyclic AMP levels in mouse epidermis in vivo and in vitro. J Invest Derm, in press.

    Google Scholar 

  199. Marks F, Furstenberger G, Kownatzki E: Prostaglandin E-mediated mitogenic stimulation of mouse epidermis in vivo by divalent cation ionophore A23187 and by tumor promoter 12-0-tetradecanoylphorbol-13-acetate. Cancer Res (41):696–702, 1981.

    PubMed  CAS  Google Scholar 

  200. Kuehl FA, Cirillo VJ, Ham EA, Humes JL: the regulatory role of the prostaglandins on the cyclic 3’-5’ AMP system. Adv Bioscience (9):155–172, 1972.

    CAS  Google Scholar 

  201. Feller N, Malachi T, Halbrecht I: Prostaglandin E2 and cyclic AMP levels in human breast tumors. J Cancer Res Clin Oncol (93): 275–280, 1979.

    PubMed  CAS  Google Scholar 

  202. Gems D, Seitz M, Kramer W, Grimm W, Till G, Resch K: Ionophore A23187 raises cyclic AMP levels in macro-phages by stimulating prostaglandin E formation. Exper Cell Res (118):55–62, 1979.

    Google Scholar 

  203. Collett MS, Erikson RL: Protein kinase activity associated with the ovian sarcoma virus SRC gene product. Proc Natl Acad Sci (75):2021–2024, 1978.

    PubMed  CAS  Google Scholar 

  204. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y: Direct activation of calcium activated phospholipid dependent protein kinase by tumor-promoting esters. J Biol Chem (257):7847–7851, 1982.

    PubMed  CAS  Google Scholar 

  205. Niedel JE, Kuhn LJ, Vandenbark GR: Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci (80):36–40, 1983.

    PubMed  CAS  Google Scholar 

  206. Ludwig KW, Niels RM: Suppression of cyclic AMP-dependent protein kinase activity in murine melanoma cells by 12-0-tetradecanoyl-phorbol-13-acetate. Biochem Biophys Res Comm (95): 296–303, 1980.

    PubMed  CAS  Google Scholar 

  207. Murray AW, Froscio M: Effect of tumor promoters on the activity of cyclic adenosine 3’:5’-monophosphate-dependent and independent protein kinases from mouse epidermis. Cancer Res (37): 1360–1363, 1977.

    PubMed  CAS  Google Scholar 

  208. Curtis GL, Stenback F, Ryan L: Inhibition of skin tumor formation with adenosine 3’,5’-cyclic monophos-phate in initiation -promotion carcinogenesis. Proc Am Assoc Cancer Res (15):61, 1974.

    Google Scholar 

  209. Perchollet JP, Boutwell RK: Effects of 3-isobutyl-1-methylxanthine and cyclic nucleotides on the biochemical processes linked to skin tumor promotion by 12-0-tetradecanoylphorbol-13-acetate. Cancer Res (41):3927–3935, 1981.

    Google Scholar 

  210. Simantov R, Sachs L: Enhancement of hormone action by a phorbol ester and anti-tubulin alkaloids involves different mechanisms. Biochim Biophys Acta (720):120–125, 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Belman, S., Garte, S. (1985). Proteases and Cyclic Nucleotides. In: Fischer, S.M., Slaga, T.J. (eds) Arachidonic Acid Metabolism and Tumor Promotion. Prostaglandins, Leukotrienes, and Cancer, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2605-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2605-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9631-7

  • Online ISBN: 978-1-4613-2605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics