Skip to main content

Active Oxygen and Promotion

  • Chapter

Part of the book series: Prostaglandins, Leukotrienes, and Cancer ((PLAC,volume 3))

Abstract

Evidence for the participation of active oxygen and organic hydro-peroxides in carcinogenesis has accumulated over the last two decades. The major forms of active oxygen are superoxide (O - ) and its conjugate acid the hydroperoxyradical (HO -2 ), singlet oxygen (O2), the hydroxyl radical (OH) and hydrogenperoxide (H2O2). On the basis of epidemiological considerations, Totter (1) has proposed that oxygen-induced cellular damage rather than exposure to industrial pollutants may play a major role in human cancer. The hereditary chromosomal breakage disorders, Ataxia telangiectasia (AT), Fanconi’s Anemia (FA) and Bloom’s Syndrome (BS), are characterized by increased cancer incidence (9). There is evidence for abnormalities in the metabolism of oxygen for all three diseases (10). Cells from patients with these diseases possess increased spontaneous frequencies of chromosomal aberrations and, in the case of BS, also increased frequencies of sister chromatid exchanges (11) (SCE) and spontaneous mutations (12,13). The chromosomal abnormalities in BS fibroblasts can be decreased upon treatment with protease inhibitors (14).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Totter JR: Spontaneous cancer and its possible relationship to oxygen metabolism. Proc Natl Acad Sci USA (77):1763–1767, 1980.

    PubMed  CAS  Google Scholar 

  2. Heston W, Pratt A: Effect of concentration of oxygen on occurrence of pulmonary tumors in strain A mice. J Natl Cancer Inst (22):707–711, 1959.

    PubMed  CAS  Google Scholar 

  3. Sanford K, Parshad R, Jones G, Handleman S, Garrison C, Price F: Role of photosensitization and oxygen in chromosome stability and spontaneous malignant transformation in culture. J Natl Cancer Inst (63):1245–1252, 1979.

    PubMed  CAS  Google Scholar 

  4. Zimmerman R, Cerutti P.: Active oxygen acts as a promotor of transformation in mouse embryo fibroblasts C3H/10T1/2/C18. Proc Natl Acad Sci (81):000, 1984, (April)

    Google Scholar 

  5. Van Duuren B, Nelson N, Orros L.: Carcinogenicity of epoxides, lactones and peroxy compounds. J Natl Cancer Inst (31):41–55, 1963.

    Google Scholar 

  6. Bock F, Myers H, Fox H: Tumor promoting activity of compounds of interest in the laboratory. Proc Am Assoc Cancer Res (7):7, 1966.

    Google Scholar 

  7. Slaga T, Klein-Szanto A, Triplett L, Yotti L, Trosko J: Skin tumor promoting activity of benzoyl peroxide, a widely used free radical generating compound. Science (13):1023–1025, 1981.

    Google Scholar 

  8. Slaga T, Solanki V, Logani M: Studies on the mechanism of action of antitumor promoting agents: suggestive evidence for the involvement of free radicals in promotion. In: Nygaard OF, Simic MG (eds) Radioprotectors and Anticarcinogens. Academic Press, New York, 1983, pp 471–485

    Google Scholar 

  9. German J: Genes which increase chromosomal instability in somatic cells and predispose to cancer. In: Steinberg A, Beam A (eds) Medical Genetics. Grune and Stratton, New York. 1972, Vol. 8, pp 61–101.

    Google Scholar 

  10. Cerutti P: Abnormal oxygen metabolism in Bloom Syndrome ? In: Natarajan A, Altman J, Obe G (eds) Progress in Mutation Research. Elsevier Biomedical Press, Amsterdam, 1982, Vol. 4, pp 203–214.

    Google Scholar 

  11. Chaganti R, Schonberg S, German J: A manifold increase in sister chromatid exchanges in Bloom’s Syndrome lymphocytes. Proc Natl Acad Sci USA (71):4508–4512, 1974.

    PubMed  CAS  Google Scholar 

  12. Warren S, Trosko J:Elevated spontaenous mutation rate in Bloom syndrome fibroblasts. Proc Natl Acad Sci (78):3133–3137, 1981.

    PubMed  CAS  Google Scholar 

  13. Vijayalaxmi H, Evans H, Ray J, German J: Bloom’s Syndrome: Evidence for an increased mutation frequency in vivo. Science (221):851–853, 1983.

    PubMed  CAS  Google Scholar 

  14. Kennedy A, Radner B, Nagasawa H: Protease inhibitors suppress spontaneously occurring chromosome abnormalities in cells from patients with Bloom’s Syndrome. Proc Natl Acad Sci (81): 000, in press.

    Google Scholar 

  15. Goldstein B, Witz G, Amoruso M, Troll W: Protease inhibitors antagonize the activation of polymorphonuclear leukocyte oxygen consumption. Biochem Biophys Res Commun (88):854–860, 1979.

    PubMed  CAS  Google Scholar 

  16. Kennedy A, Little J: Protease inhibitors suppress radiation-induced malignant transformation in vitro.Nature (276):825–826, 1978.

    PubMed  Google Scholar 

  17. Troll W, Klassen A, Janoff A: Tumorigenesis in mouse skin:Inhibition by synthetic inhibitors of proteases.Science (169): 1211–1213, 1970.

    PubMed  CAS  Google Scholar 

  18. Taylor A, Harnden D, Arlett C, Harcourt S, Lehman A, Stevens S, Bridges B: A human mutation with abnormal radiation sensitivity. Nature (258):427–429, 1975.

    PubMed  CAS  Google Scholar 

  19. Taylor A, Rosney C and Campbell J: Unusual sensitivity of Ataxia Telangiectasia cells to bleomycin. Cancer Res (39):1046–1050, 1979.

    PubMed  CAS  Google Scholar 

  20. Shiloh Y, Tabor E, Becker J: Cellular hypersensitivity to neocarcinostatin in AT skin fibroblasts. Cancer Res (42):2247–2249, 1982.

    PubMed  CAS  Google Scholar 

  21. Fujiwara Y, Tatsumi M: Repair of mitomycin C damage in mammalian cells and its impairment in FA cells. Biochem Biophys Res Commun (66):592–598, 1975.

    PubMed  CAS  Google Scholar 

  22. Nagasawa H, Little J: Suppression of cytotoxic effect of mitomycin C by superoxide dismutase in Fanconi’s anemia and dyskeratosis congenita fibroblasts. Carcinogenesis (4):795–799, 1983.

    PubMed  CAS  Google Scholar 

  23. Gruenert D, Cleaver J: Repair of psoralen-induced cross-links and monoadducts in normal and repair-deficient human fibroblasts. Mutat.Res. DNA repair reports, in press.

    Google Scholar 

  24. DeMol, N., Beijersbergen van Henegouwen, G., and van Beele,B.: Singlet oxygen formation by sensitization of furocoumarins complexed with or bound covalently to DNA. Photochem. Photobiol. 34, 661–671, 1981.

    Google Scholar 

  25. Zbinden I, Cerutti P: Near-ultraviolet sensitivity of skin fibro-blasts of patients with Bloom’s syndrome. Biochem Biophys Res Commun 98, 579–587, 1981.

    PubMed  CAS  Google Scholar 

  26. Hirschi M, Netrawali M, Remsen J, Cerutti P: Formation of DNA single-strand breaks by near-ultraviolet and -rays in normal and Bloom’s syndrome skin fibroblasts. Cancer Res. (41)2003–2007, 1981.

    PubMed  CAS  Google Scholar 

  27. Joenje H, Arwer F, Eriksson AW, de Koning H, Oostra AB: Oxygen-dependence of chromosomal aberrations in Fanconi’s Anemia. Nature (290):142–143, 1981.

    PubMed  CAS  Google Scholar 

  28. Shaham M, Becker Y, Cohen M: A diffusable clastogenic factor in Ataxia telangiectasia. Cytogenet Cell Genet (27):l–7, 1980.

    Google Scholar 

  29. Emerit I, Jalbert P, Cerutti P: Chromosome breakage factor in the plasma of two Bloom Syndrome patients. Human Genet (61):65–67, 1982.

    CAS  Google Scholar 

  30. Emerit I, Cerutti P: Clastogenic activity from Bloom’s Syndrome fibroblast cultures. Proc Natl Acad Sci USA (78):1868–1872, 1981.

    PubMed  CAS  Google Scholar 

  31. Cerutti P, Emerit I, Amstad P: Membrane-mediated chromosomal damage. In: Weinstein IB, Vogel H (eds) Genes and Proteins in Oncogenesis. Academic Press, New York, pp 55–69, 1983.

    Google Scholar 

  32. Radioprotectors and Anticarcinogens Nygaard OF, Simic MG (eds) Academic Press, New York, 1983.

    Google Scholar 

  33. Protective Agents in Cancer McBrien DCH, Slater TF (eds) Academic Press, New York, 1983.

    Google Scholar 

  34. Modulation and Mediation of Cancer by Vitamines (eds. F. Meysken and K. Prasad). S. Karger, Basel 1983

    Google Scholar 

  35. Shamberger RJ, Willis C: Selenium distribution and human cancer mortality. Crit Rev Clin Chem Sci (2):211–221, 1971.

    CAS  Google Scholar 

  36. Flohé L: Glutathione peroxidase brought into focus. In: Pryor W (ed) Free Radicals in Biology, Academic Press, New York, Vol V, pp 223–254,1981.

    Google Scholar 

  37. Shamberger R: Relationship of selenium to cancer I. Inhibition by selenium of carcinogenesis. J Natl Cancer Inst (44):931–935, 1970.

    PubMed  CAS  Google Scholar 

  38. Clayton C, Baumann C:Diet and Azo Dye tumors: Effect of diet during a period when the dye is not fed. Cancer Res (9):575–582, 1949.

    PubMed  CAS  Google Scholar 

  39. Slaga T, Bracken W: The effects of antioxidants on skin tumor initiation and arylhydrocarbon hydroxylase. Cancer Res (37):1631–1635, 1977.

    PubMed  CAS  Google Scholar 

  40. Benedict W, Wheatley W, Jones P: Differences in anchorage-dependent growth and tumorigenesis between transformed C3H/10T1/2 cells with morphologies that are not reverted to a normal phenotype by ascorbic acid. Cancer Res (42):1041–1045, 1982.

    PubMed  CAS  Google Scholar 

  41. Prasad K, Edwards-Prasad: Effects of tocopherol (Vitamin E) acid succinate on morphological alterations and growth inhibition in melanoma cells in culture. Cancer Res.(42):550–555, 1982.

    PubMed  CAS  Google Scholar 

  42. Kensler T, Bush D and Kozumbo W: Inhibition of tumor promotion by a biomimetic superoxide dismutase. Science (221):75–77, 1983.

    PubMed  CAS  Google Scholar 

  43. Borek C, and Troll W: Modifiers of free radicals inhibit in vitro the oncogenic actions of X-rays, bleomycin and the tumor promotor 12-0-tetradecanoylphorbol-13-acetate. Proc. Natl. Acad. Sci.(80):1304–1307, 1983.

    PubMed  CAS  Google Scholar 

  44. Kennedy B, Troll W and Little J: personal communication.

    Google Scholar 

  45. Ames B, Cathcart R, Schwiers E, Hochstein P: Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc Natl Acad Sci (78):6858–6862, 1981.

    PubMed  CAS  Google Scholar 

  46. Fridovich I: The biology of oxygen radicals. Science (201):875–880, 1978.

    PubMed  CAS  Google Scholar 

  47. Fridovich I: Oxygen is toxic. Bio Science (27):462–466, 1977.

    Google Scholar 

  48. for reviews see in “Free Radicals in Biology”, Pryor W (ed) Academic Press, New York, Vol I-VI.

    Google Scholar 

  49. Winter P, Smith G: The toxicity of oxygen. Anesthesiology (37):210–241, 1972.

    PubMed  CAS  Google Scholar 

  50. Balin A, Goodman D, Rasmussen H, Cristofalo V: The effect of oxygen tension on the growth and metabolism of WI-38 cells. J Cell Physiol (89):235–250, 1976.

    PubMed  CAS  Google Scholar 

  51. Balin A, Goodman D, Rasmussen H and Cristofalo V: Oxygen-sensitive stages of the cell cycle of human diploid cells. J. Cell. Biol. (78):390–400, 1978.

    PubMed  CAS  Google Scholar 

  52. Sturrock J, Nunn J: Chromosomal damage and mutations after exposure of Chinese hamster cells to high concentrations of oxygen. Mutat. Res (57):27–33, 1978.

    PubMed  CAS  Google Scholar 

  53. Yost F.J, Fridovich I: Superoxide and hydrogen peroxide in oxygen damage. Arch. Biochem. Biophys.(175):514–519, 1976.

    PubMed  CAS  Google Scholar 

  54. Bruyninckx W, Mason H, Morse S: Are physiological oxygen concentrations mutagenic ? Nature (274): 606–607, 1978.

    PubMed  CAS  Google Scholar 

  55. Moody C, Hassan H: Mutagenicity of oxygen free radicals. Proc Natl Acad Sci(79):2855–2859, 1982.

    PubMed  CAS  Google Scholar 

  56. Cunningham M, Lokesh B: Superoxide anion generated by potassium superoxide is cytotoxic and mutagenic to Chinese hamster ovary cells. Mutat. Res.(121): 299–304, 1983.

    PubMed  CAS  Google Scholar 

  57. Emerit I, Keck M, Levy A, Feingold J, Michelson A.M: Activated oxygen species at the origin of chromosome breakage and sister-chromatid exchanges. Mutat. Res.(103): 165–172, 1982.

    PubMed  CAS  Google Scholar 

  58. Levin D, Hollstein M, Christman M, Schwiers E, Ames B: A new Salmonella tester strain (TA 102) with AT base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci (79): 7445–7449, 1982.

    PubMed  CAS  Google Scholar 

  59. Bradley M, Erickson L: Comparisons of the effects of hydrogen peroxide and x-irradi ation on toxicity, mutation and DNA damage repair in mammalian cells (V-79). Biochim. Biophys. Acta (654): 135–141, 1981.

    PubMed  CAS  Google Scholar 

  60. Johansen I, Howard-Flanders P: Macromolecular repair and free radical scavenging in the protection of bacteria against X-rays. Radiat. Res.(24):184–200, 1965.

    PubMed  CAS  Google Scholar 

  61. Roots R, Okada S: Protection of DNA molecules of cultured mammalian cells from radiation induced single-strand scission by various alcohols and SH compounds. Int. J. Radiat. Biol.(21): 329–342,1972.

    CAS  Google Scholar 

  62. Roti J, and Cerutti P: Gamma-ray induced thymine damage in mammalian cells. Int. J. Radiat. Biol.(25): 413–417,1974.

    CAS  Google Scholar 

  63. Remsen J, RotiRoti J: Formation of 5,6-dihydroxydihydrothymine-type products in DNA by hydroxyl radicals. Int. J. Radiat. Biol. (32):191–194, 1977.

    CAS  Google Scholar 

  64. Cerutti P, Netrawali M: Formation and repair of DNA damage induced by indirect action of ultraviolet light in normal and Xeroderma Pigmentosum skin fibroblasts, in: Proceedings of VIth Int. Congr. of Radiat. Res. Tokyo (S. Okada, M. Inamura, T. Terashima and H. Yamaguchi etc) pp 423–432, Toppan Printing Co, Ltd, Tokyo, 1979.

    Google Scholar 

  65. Zelle B, Reynolds R, Kottenhagen M, Schuite A, Lohman P: The influence of the wavelenghts of ultraviolet radiation on survival, mutation induction and DNA repair in irradiated Chinese hamster cells. Mutat. Res.(72): 491–509, 1980.

    PubMed  CAS  Google Scholar 

  66. Jacobson E, Krell K, Dempsey M: The wavelength dependence of ultraviolet light-induced cell Killing and mutagenesis in L5178Y mouse lymphoma cells. Photochem. Photobiol.(33): 257–260, 1981.

    PubMed  CAS  Google Scholar 

  67. Suzuki F, Hay A, Lankas G, Utsumi H, Elkind M: Spectral dependencies of killing, mutation and transformation in mammalian cells and their relevance to hazards caused by solar ultraviolet radiation. Cancer Res.(41): 4916–4924, 1981.

    PubMed  CAS  Google Scholar 

  68. Staberg B, Wulf H, Poulsen T, Klemp P, Brodthagen H: Carcinogenic effect of artificial sunlight and UV-A irradiation in hairless mice. Arch. Dermatol.(119): 641–643, 1983.

    PubMed  CAS  Google Scholar 

  69. Causes and Effects of stratospheric ozone reduction: an update. National Academy Press, Washington D.C. 1982.

    Google Scholar 

  70. Foote Ch: Photosensitized oxidation and Singlet oxygen: consequences in biological systems. In: Pryor W(ed) “Free radicals in Biology”,Academic Press, N.Y. 1976,Vol.II,pp 85–133.

    Google Scholar 

  71. Cerutti P: Effects of ionizing radiation on mammalian cells. Naturwissenschaft,(61): 51–59, 1974.

    CAS  Google Scholar 

  72. For reviews, see series Adv. in Radiat. Biol. (Ed J. Lett and H. Adler) Academic Press, N.Y.

    Google Scholar 

  73. Mason R: Free radical metabolites and toxic chemicals. In:Pryor W(ed) “Free Radicals in Biology”, Academic Press, New York, 1982, Vol. V, pp 161–222.

    Google Scholar 

  74. Borg D, Schaich K: Cytotoxicyty from coupled redox cycling of autoxidizing xenobiotics and metals. Israel J. Chem (23): 1983, in press.

    Google Scholar 

  75. Bachur N, Gordon S, Gee M: A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res.(38): 1745–1750, 1978.

    PubMed  CAS  Google Scholar 

  76. Bellomo G, Jewell S, Thor H, Orrenius S: Regulation of intracellular calcium compartmentation: Studies with isolated hepatocytes and t-butylhydroperoxide. Proc Natl Acad Sci (79): 6842–6846, 1982.

    PubMed  CAS  Google Scholar 

  77. Lehninger A, Vercesi A, Bababunmi E: Regulation of Ca+ release from mitochondria by oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci,(75): 1690–1694, 1978.

    PubMed  CAS  Google Scholar 

  78. Jewell S, Bellomo G, Thor H, Orrenius S, Smith M: Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis. Science (217): 1257–1259, 1982.

    PubMed  CAS  Google Scholar 

  79. Goodman J, Hochstein P: Generation of free radicals and lipid peroxidation by redox cycling of adriamycine and daunomycin. Biochem. Biophys. Res. Comm.(77): 797–803, 1977.

    PubMed  CAS  Google Scholar 

  80. Kimball J, Gleiser C, Wang Y:Vitamin E modification of daunomycin-induced carcinogenesis. Clin. Res. 27, 825A 1979

    Google Scholar 

  81. Krywanska E, Piekarski L: Neoplasma (24) 395 1977

    PubMed  Google Scholar 

  82. Biaglow J, Jacobson B, Nygaard D: Metabolic reduction of 4-nitro-quinoline-N-oxide and other radical-producing drugs to oxygen-reactive intermediates. Cancer Res.(37): 3306–3313, 1977.

    PubMed  CAS  Google Scholar 

  83. Varnes M, Biaglow J: Interactions of the carcinogen 4-nitroquino-line-1-oxide with the non-protein thiols of mammalian cells. Cancer Res.(39): 2960–2965, 1979.

    PubMed  CAS  Google Scholar 

  84. Biaglow J, Varnes M, Astor M, Mitchell J, Russo A: Intracellular thiols: Involvement in drug metabolism and radiation response.In: Nygaard C, Simic M(eds) “Radioprotectors and Anticarcinogens”, Academic Press, N.Y., 1983, pp 203–236.

    Google Scholar 

  85. Ikenaga M, and Kakunaga T: Excision of 4-nitroquinoline-l-oxide damage and transformation in mouse cells. Cancer Res.(37): 3672–3678, 1977.

    PubMed  CAS  Google Scholar 

  86. Chabner B: “Bleomycin” In: “Pharmacologic Principles of Cancer Treatment”.W.B.Saunders Company, 1982,pp 377–386.

    Google Scholar 

  87. Morgan A, Cone R, Elgert T: The mechanism of DNA strand breakage by Vitamin C and superoxide and the protective roles of catalase and superoxide dismutase. Nucl. Acid. Res.(3): 1139–1149, 1976.

    CAS  Google Scholar 

  88. Ide M, Kaneko M, Cerutti P: Benzo(a)pyrene and ascorbate-CuS04 induce DNA damage in human cells by indirect action. In: Mc Brien D. and Slater T.(eds) Protective Agents in Cancer, Academic Press, N.Y. 1983, pp 125–140.

    Google Scholar 

  89. Mason R, Peterson F, Holtzman inhibition of azoreductase by oxygen: the role of the azo anion free radical metabolite in the reduction of oxygen to superoxide. Mol. Pharmacol.(14):665–1978.

    PubMed  Google Scholar 

  90. Misra H, Fridovich I: The oxidation of Phenylhydrazine: Superoxide and mechanism. Biochemistry,(15): 681–687, 1976.

    PubMed  CAS  Google Scholar 

  91. Hassan H, Fridovich I: Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch. Biochem. Biophys.(196): 385–395, 1979.

    PubMed  CAS  Google Scholar 

  92. Valuenzuela A, Rios H, Neiman G: Evidence that superoxide radicals are involved in the hemolytic mechanism of Phenylhydrazine. Experientia (33):962–963, 1977.

    Google Scholar 

  93. Goldberg B, Stern A: The mechanism of oxidative hemolysis produced by Phenylhydrazine. Mol. Pharmacol.(13): 832–839, 1977.

    PubMed  CAS  Google Scholar 

  94. Slater T.F: Activation of carbon tetrachloride: chemical principles and biological significance. In:“Free Radicals, lipid peroxidation and cancer” (Eds D. Mc Brien and T. Slater) Academic Press, N.Y. 1982, pp 243–274.

    Google Scholar 

  95. National Research Council of Canada (1981) “Polylchlorinated dibenzo(p)dioxins. Criteria for their effects on man and his environment. NRCC Publ. No 18574, Natl Res. Counc. Can, Ottawa.

    Google Scholar 

  96. Cole L, Nowell P: Accelerated induction of hepatomas in fast neutron-irradiated mice infected with carbon tetrachloride. Ann. N.Y. Acad. Sci (114):259–267, 1964.

    PubMed  CAS  Google Scholar 

  97. Pitot H, Goldsworthy T, Campbell H, Poland A: Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethylnitrosamine.Cancer Res.(40): -3616–3620, 1980.

    PubMed  CAS  Google Scholar 

  98. Poland A, Knutson J, Glover E, Kende A: Tumor promotion in the skin of hairlesss mice by halogenated aromatic hydrocarbons. In: Weinstein I.B. and Vogel H (eds) “Genes and Proteins in Oncogenesis”, Academic Press, N.Y, 1983, pp 143–161.

    Google Scholar 

  99. Stohs S, Hassan M, Murray W: Lipid peroxidation as a possible cause of TCDD toxicity. Biochem. Biophys. Res. Comm.(III): 854–859, 1983.

    Google Scholar 

  100. Turrens J, Boveris A: Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J.(191): 421–427, 1980.

    PubMed  CAS  Google Scholar 

  101. Mannering G, In:“Concepts in Drug Metabolism”. Jenner P and Testa B(eds), Marcel Dekker, N.Y., 1981, pp 53–166.

    Google Scholar 

  102. Estabrook R, Werringloer J: Tissue hypoxia and ischemia. In: Reivich M. et al.(eds) Advances in Expt. Med. Biol. Plenum Press, N.Y.,1976, pp 19–35.

    Google Scholar 

  103. O’Brien, P: Hydroperoxides and superoxides in microsomal oxidations. Pharmacol. Ther.(A 2): 517–536, 1978.

    Google Scholar 

  104. Plaa G, Witschi H: Chemicals, Drugs and Lipid Peroxidation.Ann. Rev. Pharmacol. Toxicol.(16): 125–141, 1976.

    CAS  Google Scholar 

  105. Gunsalus I, Sugar S: Enzymol. Relat. Areas Mol. Biol. 48, 33–203, 1978.

    Google Scholar 

  106. Gosalvez M: Carcinogenesis with the insecticide rotenone. Mini-review. Life Sciences, (32): 809–816, 1983.

    CAS  Google Scholar 

  107. Pitot H, Sirica A: The stages of initiation and promotion in hepatocarcinogenesis. Biochem. Biophys. Acta (605): 191–195, 1980.

    PubMed  CAS  Google Scholar 

  108. Reddy J.K, Warren J.R, Reddy M.K, Lalwani N.D: Hepatic and renal effects of peroxisome proliferators: biological implications. Ann. N.Y. Acad. Sci(386): 81–110, 1982.

    PubMed  CAS  Google Scholar 

  109. Jones D, Eklow L, Thor H, Orrenius S: Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys.(210): 505–516, 1981.

    PubMed  CAS  Google Scholar 

  110. Chance B, Sies H, Boveris A: Hydroperoxide metabolism in mammalian organs. Physiol. Rev.(59):527–605, 1979.

    PubMed  CAS  Google Scholar 

  111. Reddy J, Azarnoff D, Hignite C: Hypolipidaemic hepatic peroxisome-proliferators from a novel class of chemical carcinogens. Nature (283): 397–398, 1980.

    PubMed  CAS  Google Scholar 

  112. Ward J, Rice J, Creasia D, Lynch P, Riggs C: Dissimilar patterns of promotion by di(2-ethylhexyl)phtalate and phenobarbital of hepatocellular neoplasia initiated by diethylnitrosamine in B6C3F1 mice.Carcinogenesis (4): 1021–1029, 1983.

    PubMed  CAS  Google Scholar 

  113. Warren J, Simmon V, Reddy J: Properties of hypolipidemic peroxisome proliferators in the lymphocyte 3H thymidine and Salmonella mutagenesis assays. Cancer Res.(40): 36–41, 1980.

    PubMed  CAS  Google Scholar 

  114. Cohen G, Hochstein P: Glutathione peroxidase: the primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry, (2): 1420–1428, 1963.

    PubMed  CAS  Google Scholar 

  115. Cohen G, Hochstein P: Generation of hydrogen peroxide in erythrocytes by hemolytic agents. Biochemistry(3): 895–900, 1964.

    PubMed  CAS  Google Scholar 

  116. Goldstein B, Rozen M, Quintaval la J, Amoruso M: Decrease in mouse lung and liver glutatione peroxidase activity and potentiation of the lethal effects of ozone and paraquat by the superoxide dismutase inhibitor diethyldithiocarbamate. Biochem.Pharmacol.(28) 27–30,1979.

    PubMed  CAS  Google Scholar 

  117. Sinet P, Garber P, Jerome H: H2O2 production, modification of the glutathione status and methemoglobin formation in red blood cells exposed to diethyldithiocarbamate in vitro. Biochem.Pharmacol. (31): 521–525,1982.

    PubMed  CAS  Google Scholar 

  118. Westman G, Marklund S: Diethyldithiocarbamate, a superoxide dismutase inhibitor, decreases the radioresistance of Chinese hamster cells. Radiat. Res. (83): 303–311, 1980.

    PubMed  CAS  Google Scholar 

  119. Frank L, Wood D, Roberts R: Effect of diethyldithiocarbamate on oxygen toxicity and lung enzyme activity in immature and adult rats. Biochem. Paarmacol. 27, 251–1978.

    Google Scholar 

  120. Rannug A, Rannug U: The role of enzyme inhibition in the mutagenicity of dithiocarbamic acid derivatives towards Salmonella typhimurium. Chem. Biol. Interact. 1983.

    Google Scholar 

  121. Solanki V, Rana R, Slaga T: Diminution of mouse epidermal superoxide dismutase and catalase activities by tumor promotors. Car inogenesis (2):1141–1146, 1982.

    Google Scholar 

  122. Oberiey L, Buettner G: Role of superoxide dismutase in cancer: a review. Cancer Res. (39):1141–1149, 1979.

    Google Scholar 

  123. Meister A: Glutathione Metabolism and Transport. In Nygaard OF and Simic MG(eds) “Radioprotectors and anticarcinogens. Academic Press, N.Y. 1983, pp 121–151.

    Google Scholar 

  124. Wendel A, Feuerstein S: Drug induced lipid peroxidation in mice I: modulation by monooxygenase activity, glutathione and selenium status. Biochem. Pharmacol.(30):2513–2520, 1981.

    CAS  Google Scholar 

  125. Novogodsky A, Nehring R, Meister A:Inhibition of amino acid transport into lymphoid cells by the glutamine analog L-2-amino-4-oxo-5-chloropentaonate. Proc. Natl Acad Sci(76):4932–4935,1979.

    Google Scholar 

  126. Arrick B, Nathan C, Griffith O, Cohn Z: Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J. Biol. Chem. (257): 1231–1237, 1982.

    PubMed  CAS  Google Scholar 

  127. Dethmers J, Meister A: Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc. Natl Acad Sci (78): 7492–7496, 1982.

    Google Scholar 

  128. Brune K, Glatt M, Kälin H, Feskar B: Pharmacological control of prostaglandin and thromboxane release from macrophages. Nature (274):261–263, 1978.

    PubMed  CAS  Google Scholar 

  129. Levine L, Ohuchi K: stimulation by carcinogens and promotors of prostaglandin production by dog kidney (MDCK) cells in culture. Cancer Res. (38):4142–4146, 1978.

    PubMed  CAS  Google Scholar 

  130. Bresnick E, Meunier P, Lamden M: Epidermal prostaglandins after topical application of a tumor promotor. Cancer Letters(7): 121–125, 1979.

    PubMed  CAS  Google Scholar 

  131. Wertz P, Muller G: Rapid stimulation of phospholipid metabolism in bovin lymphocytes by tumor promoting phorbol esters. Cancer Res. (38): 2900–2904, 1978.

    PubMed  CAS  Google Scholar 

  132. Marks F, Fürstenberger G, Kownatzki E: Prostaglandin E-mediated mutagenic stimulation of mouse epidermis in vivo by divalent cation ionophore A 23187 and by tumor promotor 12-0-tetrade-canoyl-phorbol-13-acetate. Cancer Res.(41): 696–702, 1981.

    PubMed  CAS  Google Scholar 

  133. Troll W, Witz G, Goldstein B, Stone D, Sugimura T: The role of free oxygen radicals in tumor promotion and carcinogenesis. In: Hecker E, Fusenig W, Kunz W, Marks F and Thielmann H. (eds) Carcinogenesis and Biological Effects of Tumor Promotors. Carcinogenesis vol. 7, Raven Press, New-York, 1982, pp 593–597.

    Google Scholar 

  134. Cerutti P, Remsen J: Formation and repair of DNA damage induced by oxygen radical species in human cells. In:Nichols W and Murphy D (eds). DNA repair Processes. Miami: symposia specialists, 1977, pp 147–166.

    Google Scholar 

  135. Ivanovic V, Weinstein I.B.: Glucocorticoids and benzo(a)pyrene have opposing effects on EGF receptor binding. Nature (293):404–406, 1981.

    PubMed  CAS  Google Scholar 

  136. Peterhans E, Albrecht H, Wyler R: Detection of H-2 and Sendai virus antigens by chemiluminescence. J. Immunol. Methods (4): 295–302, 1981.

    Google Scholar 

  137. Morley J, Bray M.A, Jones R.W, Nugteren D.H, van Dorp D.A: Prosta- glandin and thromboxane production by human and guinea-pig macro-phages and leucocytes. Prostaglandins (17): 729–736, 1979.

    PubMed  CAS  Google Scholar 

  138. Humes J, Burger S, Galavage M, Kuehl F.A. Jr, Wightman P.D, Dahlgren M.E, Davies P, Bonney R.J: The diminished production of arachidonic acid oxygenation products by elicited mouse peritoneal macrophages:possible mechanisms. J Immunol (124): 2110–2116, 1980.

    PubMed  CAS  Google Scholar 

  139. Peterhans E, Albrecht H, Wyler R: Detection of H-2 and Sendai virus antigens by chemiluminescence. J. Immunol. Methods (4):295–302, 1981.

    Google Scholar 

  140. Hafeman D, Lucas Z: Polymorphonuclear leukocyte-mediated anti-body-dependent, cellular toxicity, against tumor cells. Dependence on oxygen and the respiratory burst. J. Immunol.(123): 55–62, 1979.

    PubMed  CAS  Google Scholar 

  141. Hatefi Y, Hanstein W: lipid oxidation in biological membranes. I: lipid oxidation in submitochondrial particles and microsomes induced by chaotropic agents. Arch. Biochem. Biophys.(138): 73–86, 1970.

    CAS  Google Scholar 

  142. Cerutti P, Amstad P, Emerit I: Tumor promotor phorbol-myristate-acetate induces membrane-mediated chromosomal damage. In:Nygaard OF and Simic MG (eds) “Radioprotectors and Anticarcinogens” Academic Press, N.Y., 1983, pp 527–538.

    Google Scholar 

  143. Egan R, Paxton J, Kuehl F.A: Mechanism for irreversible self-de-activation of prostaglandin synthetase. J. Biol. Chem.(251):7329–7335, 1976.

    PubMed  CAS  Google Scholar 

  144. Rahimtula A, O’Brien P.J: The possible involvement of singlet oxygen in prostaglandin biosynthesis. Biochem. Biophys. Res. Comm.- (70): 893–899, 1976.

    PubMed  CAS  Google Scholar 

  145. Sugioka K, Nakano M: A possible mechanism of the generation of singlet molecular oxygen in NADH-dependent microsomal lipid peroxidation. Biochem. Biophys. Acta,(423): 203–216, 1976.

    PubMed  CAS  Google Scholar 

  146. Van Furth R: Mononuclear phagocytes: functional aspects. Martins Nijkoff Publishers. The Hague, 1980.

    Google Scholar 

  147. Roder J, Pross H: The biology of the human natural Killer cell. J. Clin. Immunol.(2): 249–263, 1982.

    PubMed  CAS  Google Scholar 

  148. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y: Direct activation of calcium-activated phospholipid dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. (257): 1847–1851, 1982.

    Google Scholar 

  149. Niedel J, Kuhn J, Vandenbark E: Phorbol di ester receptor copurifies with protein kinase C. Proc Natl Acad Sci(80): 36–40, 1983.

    PubMed  CAS  Google Scholar 

  150. Ashendel C, Staller J, Boutwell R: Protein kinase activity associated with a phorbol ester receptor purified from mouse brain. Cancer Res.(43): 4333–4337, 1983.

    PubMed  CAS  Google Scholar 

  151. Emerit I, Cerutti P: Tumor promotor phorbol-12-myristate-13-acetate induces a clastogenic factor in human lymphocytes. Proc Natl Acad Sci(79): 7509–7513, 1982.

    PubMed  CAS  Google Scholar 

  152. Mead J: Free radical mechanisms of lipid damage and consequences for cellular membranes.I:Pryor W.(ed)“Free Radicals in Biology”, Academic Press, N.Y. 1976, vol 1, pp 51–68.

    Google Scholar 

  153. Esterbauer H: Aidehydic Products of lipid peroxidation. In:Mc Brien D, and Slater T (eds)“Free Radicals, lipid peroxidation and Cancer”. Academic Press, N.Y. 1982, pp 101–128.

    Google Scholar 

  154. Hornsby P, Crivello J: The role of lipid peroxidation and biological antioxidants in the function of the adrenal cortex. Part. I: A background review. Molecular and Cellular Endocrinology (30): 1–20, 1983.

    PubMed  CAS  Google Scholar 

  155. Tappel A: Measurement of and protection from in vivo lipid peroxidation. In:Pryor W (ed)“Free Radicals in Biology”, Academic Press, N.Y., 1980, vol. IV, pp 2–47.

    Google Scholar 

  156. Borg D, Schaich K, Elmore J, Bell J: Cytotoxic reactions of free radical species of oxygen.Photochem. Photobiol.(28): 887–907,1978.

    CAS  Google Scholar 

  157. O’Brien R, Parker J: Oxidation induced lymphocyte transformation. Cell (7): 13–20 (1976).

    PubMed  Google Scholar 

  158. Srinivas L, Coburn N: personal communication.

    Google Scholar 

  159. Fridovich I: Oxygen radicals, hydrogen peroxide and oxygen toxicity.In:Pryor W (ed)“Free Radicals in Biology”.Academic Press, N.Y. 1976, vol I, pp 239–277.

    Google Scholar 

  160. Raleigh J, Shum F: Radioprotection in model lipid membranes by hydroxyl radical scavengers: Supplementary role for α-tocopherol in scavenging secondary peroxy radicals.In:Pryor W (ed)“Free Radicals in Biology”. Academic Press, N.Y.vol. IV, pp 87–102 1980.

    Google Scholar 

  161. Witting A: Vitamin E and lipid antioxidants in free radical initiated reactions.In:Pryor W (ed)“Free Radicals in Biology, Academic Press, N.Y., 1980,vol IV, pp 295–320.

    Google Scholar 

  162. Csallany A.S, Draper H.H: Determination of N,N’-diphenyl-p-phenylene diamine in animal tissues. Proc. Soc. Exp. Biol. Med.(104): -739–742, 1960.

    PubMed  CAS  Google Scholar 

  163. Neumann N: Methods in Enzymology (25):393–400, 1972

    CAS  Google Scholar 

  164. Fliss H, Weissbach H, Brot N: Oxidation of methionine residues in proteins of activaated human neutrophils. Proc. Natl. Acad. Sci, (80):7160–7164, 1983

    PubMed  CAS  Google Scholar 

  165. Jeffrey E, Nerland D, El-Azhary R, Mannering G: Microsomes and Drug Oxidations. In: Ullrich V, Roots A, Hildebrandt R, Estabrook R, Conney A (eds). Pergamon Press, Oxford, 1977, pp 323–330.

    Google Scholar 

  166. Kono Y, Fridovich I: Superoxide radical inhibits catalase. J. Biol. Chem. (257):5751–5754, 1982.

    PubMed  CAS  Google Scholar 

  167. Christophersen B.O: Biochim. Biophys. Acta (189): 387–389, 1969.

    Google Scholar 

  168. Tyrrell R: Ree A+-dependent synergism between 365 nm and ionizing radiation in log phase Escherichia Coli. A model for oxygen-dependent near-UV inactivation by disruption of DNA repair. Photochem. Photobiol.(23): 13–20, 1976.

    PubMed  CAS  Google Scholar 

  169. Grafstrom R, Fornace A, Autrup H, Lechner J, Harris C:Formaldehyde damage to DNA and inhibition of DNA repair in human bronchial cells. Science (220): 216–218, 1983.

    PubMed  CAS  Google Scholar 

  170. Miller E.C: Some current perspectives in chemical carcinogenesis and experimental animals: presidential address. Cancer Res.(38): 1479–1496, 1978.

    PubMed  CAS  Google Scholar 

  171. Cerutti P: Repairable damage in DNA. In: Hanawalt, P, Friedberg E, Fox C (eds). DNA repair mechanisms, Academic Press, N.Y. 1978, pp 717–722.

    Google Scholar 

  172. Pietronigro D, Jones W, Kalty K, Demopoulos H: Interaction of DNA and liposomes as a model for membrane-mediated DNA damage. Nature (267):78–79,1977.

    PubMed  CAS  Google Scholar 

  173. Weiss S, Lampert M, Test S: Long-lived oxidants generated by human neutrophils characterization and bioactivity. Science (222):625–627,1983.

    PubMed  CAS  Google Scholar 

  174. Webb R, Photochemical and Photobiological Reviews 2. In:Smith K (ed). Plenum Press, N.Y. 1977, pp 198–201.

    Google Scholar 

  175. Arcos J, Argus M.In:Chemical Induction of Cancer, Structural Bases and Biological Mechanisms, Academic Press, N.Y. 1974, vol. IIB, pp 111–121.

    Google Scholar 

  176. See in “Prostaglandins and Cancer: First International Conference”.In: Powles T et al (eds), Alan R. Liss Inc. New-York, 1982.

    Google Scholar 

  177. Hariharan P, Cerutti P: Formation of products of the 5,6-dihydroxy-dihydrothymine type by ultraviolet light in Hela Cells. Biochemistry (16):2791–2795, 1977.

    PubMed  CAS  Google Scholar 

  178. Amstad P, Levy A, Emerit I, Cerutti P: Carcinogenesis, in press.

    Google Scholar 

  179. Emerit I, Cerutti P: Tumor promotor phorbol-12-myristate-l3-acetate induces chromosomal damage via indirect action. Nature (293): 144–146, 1981.

    PubMed  CAS  Google Scholar 

  180. Emerit I, Levy A, Cerutti P: Suppression of tumor promoter phorbolmyristate acetate-induced chromosome breakage and sister-chromatid exchanges. Mutat. Res. (103):165–172, 1983.

    Google Scholar 

  181. Leadon S, Hanawalt P: Monoclonal antibody to DNA containing thymine glycol. Mutat. Res. (112):191–200, 1983.

    PubMed  CAS  Google Scholar 

  182. Kinsella A, Gainer H, Butler J: Investigation of a possible role for superoxide anion production in tumor promotion. Carcinogenesis (4): 717–719, 1983.

    PubMed  CAS  Google Scholar 

  183. Lesko S, Lorentzen R, Ts’o P: Role of superoxide in deoxyribonucleic acid strand scission. Biochemistry (19): 3023–3028, 1980.

    PubMed  CAS  Google Scholar 

  184. Brawn K, Fridovich I: DNA strand scission by enzymatically generated oxygen radicals. Arch. Biochem. Biophys.(206): 414–419, 1981.

    PubMed  CAS  Google Scholar 

  185. Rhaese H, Freese E: Chemical analysis of DNA alterations. 1. Base liberation and backbone breakage of DNA and oligodeoxyadenylic acid induced by hydrogen peroxide and hydroxylamine. Biochim. Biophys. Acta,(155):476–490, 1968.

    PubMed  CAS  Google Scholar 

  186. Bautz-Freese, E., Gerson, J., Taber, H., Rhaese, H. and Freese, E.: Inactivating DNA alterations induced by peroxides and peroxide-producing agents. Mutat. Res. 4: 517–531, 1967.

    Google Scholar 

  187. Bradley, M. Hsu, I. and Harris, C.: Relationship between sister chromatid exchange and mutagenicity, toxicity and DNA damage. Nature 282: 318–320, 1979.

    PubMed  CAS  Google Scholar 

  188. Conger, A. and Fairchild, L.: Breakage of chromosomes by oxygen. Proc Natl Acad Sci 38: 289–299, 1952.

    PubMed  CAS  Google Scholar 

  189. Emerit I:Chromosome Breakage factors: Origin and possible significance. In: Natarajan AT et al (eds). Progress in Mutation Research, Elsevier Biomedical Press, Amsterdam, vol.4, pp 61–74.

    Google Scholar 

  190. Sasaki M, Matsubara S: Free radical scavenging in protection of human lymphocytes against chromosome aberration formation by gamma-ray irradiation. Int. J. Radiat. Biol.(32): 439–445, 1977.

    CAS  Google Scholar 

  191. Nordenson I: Effects of superoxide dismutase and catalase on radiation-induced chromosome aberrations: dose and cell cycle dependence. Hereditas (89): 163–167, 1978.

    PubMed  CAS  Google Scholar 

  192. Demple B, Halbrook J: Inducible repair of oxidative DNA damage in Escherichia Coli. Nature (304): 466–468, 1983.

    PubMed  CAS  Google Scholar 

  193. see e.g. “DNA repair mechanisms” (eds. P. Hanawalt, E. Friedberg and C. Fox) Academic Press, N.Y. 1978.

    Google Scholar 

  194. In: “The repair of genomic damage in living tissue” Friedberg E, Bridges B, Fox I (eds), Alan R. Liss, N.Y. 1984, in press.

    Google Scholar 

  195. Dzarlieva R, Fusenig N: Tumor promotor 12-0-tetradecanoylphorbol-13-acetate enhances sister chromatid exchanges and numerical and structural chromosome aberrations in primary mouse epidermal cultures. Cancer Letters (16):7–17, 1982.

    PubMed  CAS  Google Scholar 

  196. Parry J.M, Parry E.M, Barret J.C: Tumor promoters induce mitotic aneuploidy in yeast. Nature (294): 263–265, 1981.

    PubMed  CAS  Google Scholar 

  197. Birnboim H.C: DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol-myristate-acetate. Science,(215): 1247–1249, 1982.

    PubMed  CAS  Google Scholar 

  198. Barsoum J, Varshavsky A: Mitogenic hormones and tumor promotors greatly increase the incidence of colony-forming cells bearing amplified dihydrofolate reductase genes. Proc Natl Acad Sci(80): 5330–5334, 1983.

    PubMed  CAS  Google Scholar 

  199. Tlsty T, Brown P, Johnson R, Schimke R: Enhanced frequency of generation of methotrexate resistance and gene amplification in cultured mouse and hamster cell lines. In:Schlimke R (ed)Gene Amplification.Cold Spring Harbor Laboratory, 1982, pp 231–238.

    Google Scholar 

  200. Oppenheim J, Fishbein W: Induction of chromosome breaks in cultured normal human leukocytes by potassium arsenite, hydroxyurea and related compounds. Cancer Res.(25): 980–982, 1965.

    PubMed  CAS  Google Scholar 

  201. Przybyszewski W, Malec J: Protection against hydroxy-urea-induced cytotoxic effects in L5178Y cells by free radical scavengers. Cancer Letters (17): 223–228, 1982.

    PubMed  CAS  Google Scholar 

  202. Makino F, Okada S: Effects of ionizing radiation on DNA replication in cultured mammalian cells. Rad. Res.(62): 37–51, 1975.

    CAS  Google Scholar 

  203. Painter R, Young B: X-ray induced inhibition of DNA synthesis in Chinese hamster ovary-, human Hela and mouse L-cells. Radiat. Res.(64): 648–656, 1975.

    PubMed  CAS  Google Scholar 

  204. Kaufmann W, Schwartz J: Inhibition of replicon-initiation by 121-Otetradecanoylphorbol-13-acetate. Biochem. Biophys. Res. Comm.-(103): 82–89, 1981.

    PubMed  CAS  Google Scholar 

  205. Seegmiller J, Cerutti P: unpublished.

    Google Scholar 

  206. Emerit I, Cerutti P: Clastogenic action of tumor promotor phorbol-12-myristate-13-acetate in mixed human leukocyte cultures. Carcinogenesis (4): 1313–1316, 1983.

    PubMed  CAS  Google Scholar 

  207. Bonney R, Humes J:Studies on a destructive oxidant released in the enzymatic reduction of prostaglandin G2 and other hydroperoxy acids. In: Autor A (ed) Pathology of Oxygen, Academic Press, N.Y. 1982, pp 175–189.

    Google Scholar 

  208. Kuehl F, Ham E, Egan R, Dougherty H, Bonney R, Humes J: “Studies on a destructive oxidant released in the enzymatic reduction of prostaglandin G2 and other hydroperoxy acids”.In:Autor A (ed)-“Pathology of Oxygen”.Academic Press, N.Y., 1982,pp 175–189.

    Google Scholar 

  209. Murray H, Cohen Z: Macrophage oxygen-dependent antimicrobial activity. III: Enhanced oxidative metabolism as an expression of macrophage activation. J. Exp. Med.(152): 1596–1609, 1980.

    PubMed  CAS  Google Scholar 

  210. Murray H, Inangbhanich Ch, Nathan C, Cohen Z: Macrophage oxygen-dependent antimicrobial activity. II: The role of oxygen intermediates. J. Exp. Med.(150): 950–964, 1979.

    PubMed  CAS  Google Scholar 

  211. Ashendel C, Boutwell R: Prostaglandin E and F levels in mouse epidermis are increased by tumor promoting phorbol esters. Biochem. Biophys. Res. Comm. (90): 623–627, 1979.

    PubMed  CAS  Google Scholar 

  212. Fürstenberger G, Richter H, Fusenig N, Marks F: Arachidonic acid and prostaglandin E? release and enhanced cell proliferation induced by the phorbolester TPA in a murine epidermal cell line. Cancer Letters (11): 191–198, 1981.

    PubMed  Google Scholar 

  213. Wrighton S, Pai J.-K, Mueller G: Demonstration of two unique metabolites of arachidonic acid from phorbol ester-stimulated bovine lymphocytes. Carcinogenesis(4): 1247–1251, 1983.

    PubMed  CAS  Google Scholar 

  214. Weitzman S, Stossel T: Mutation caused by human phagocytes. Science (212): 546–547, 1981.

    PubMed  CAS  Google Scholar 

  215. Weitberg A, Weitzman S, Destrempes M, Latt S, Stossel T: Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. New Engl. J. Med.(308): 26–30, 1983.

    PubMed  CAS  Google Scholar 

  216. Birnboim H: Importance of DNA strand break damage in tumor promotion. In:Nygaard O and Simic M (eds)“Radioprotectors and Anticarcinogens”. Academic Press, N.Y.,1983, pp 539–556.

    Google Scholar 

  217. Wang T.V, Cerutti P: Effect of formation and removal of aflatoxin B1: DNA adducts in 10T1/2 mouse embryo fibroblasts on cell viability. Cancer Res.(40): 2904–2909, 1980.

    PubMed  CAS  Google Scholar 

  218. Amstad P, Cerutti P: DNA binding of aflatoxin B1 by co-oxygenation in mouse embryo fibroblasts C3H/10T1/2, Biochem. Biophys. Res. Comm.(112): 1034–1040, 1983.

    PubMed  CAS  Google Scholar 

  219. Wang T. V, Cerutti P: Formation and removal of aflatoxin B1 induced DNA lesions in epithelioid human lung cells. Cancer Res. (39): 5165–5170, 1979.

    PubMed  CAS  Google Scholar 

  220. Cerutti P, Wang V.T, Amstad P: Reactions of aflatoxin B1 damaged DNA in vitro and in situ in mammalian cells, in Carcinogenesis: Fundamental and Environmental Effects (B. Pullamn, P.O.P. Ts’o and H. Gelboin, eds.) pp 465–477, D. Reidei Publ. Company, 1980.

    Google Scholar 

  221. Hiller K, Wilson R: Hydroxyl-free radicals and anti-inflammatory drugs: biological inactivation studies and reaction rate constants. Biochem. Pharmacol.(32): 2109–2111, 1983.

    CAS  Google Scholar 

  222. Hassid A, Levine L: Induction of fatty acid cyclooxygenase activity in canine kidney cells (MDCK) by benzo(a)pyrene, J. Biol. Chem.(252): 6591–6593, 1977.

    PubMed  CAS  Google Scholar 

  223. Slaga T, Fisher S, Nelson K, Gleason G: Studies on the mechanism of skin tumor promotion: evidence for several stages of promotion. Proc. Natl. Acad. Sci(77): 3659–3663, 1980.

    PubMed  CAS  Google Scholar 

  224. Fürstenberger G, Sorg B, Marks F: Tumor promotion by phorbolester in skin: evidence for a memory effect. Science (220): 89–91, 1983.

    PubMed  Google Scholar 

  225. Coburn N, Former K, Nelson K, Juspa S: Tumour promotor induces anchorage independence irreversibly.Nature (281): 589–591, 1979.

    Google Scholar 

  226. Coburn N: Tumor promotor produces anchorage independence in mouse epidermal cells by an induction mechanism. Carcinogenesis (1) 951–1980.

    Google Scholar 

  227. Burns F, Albert R, Altschuler B, Morris E: Approach to risk assessment based on data from the mouse skin initiation promotion model. Environmental Health Perspectives (50): 309–320, 1983.

    PubMed  CAS  Google Scholar 

  228. Mattern M.R, Hariharan P.V, Cerutti P: Selective excision of gamma-ray damaged thymine from the DNA of cultured mammalian cells, Biochim. Biophys. Acta (395): 48–55, 1975.

    CAS  Google Scholar 

  229. Ormerod M: “Radiation-induced strand breaks in the DNA of mammalian cells, in ”Biology of Radiation Carcinogenesis (Eds J. Juhas, R. Tennant and J. Regan) pp 67–92, Raven Press, N.Y., 1976.

    Google Scholar 

  230. Kozumbo W, Seed J, Kensler T: Inhibition by 2(3)-tert-butyl-4-hydroxyanisole and other antioxidants of epidermal ornithine decarboxylase activity induced by 12-0-tetradecanoylphorbol-13-acetate. Cancer Res.(43): 2555–2559, 1983.

    PubMed  CAS  Google Scholar 

  231. Friedman J, Cerutti P: The induction of ornithine decarboxylase by phorbol-12-myristate-13-acetate or by serum is inhibited by antioxidants. Carcinogenesis (4): 1425–1427, 1983.

    PubMed  CAS  Google Scholar 

  232. Bishop J.M:Cellular oncogens and retroviruses. Ann. Rev. Biochem (52): 301–354, 1983.

    PubMed  CAS  Google Scholar 

  233. Bishop J.M: Cancer genes come of age.Cell (32): 1018–1020, 1983.

    PubMed  CAS  Google Scholar 

  234. Hayaishi O, Ueda K. eds: “ADP-ribosylation reactions”. Biology and Medicine, Academic Press, N.Y. 1982.

    Google Scholar 

  235. Johnstone A, Williams G: Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature (300): 368–370, 1982.

    PubMed  CAS  Google Scholar 

  236. Althaus F, Lawrence S, He Y-Z, Sattler G, Tsukada Y,Pitot H: Effects of altered ADP-ribose in metabolism on expression of fetal functions by adult hepatocytes. Nature (300): 366–368, 1982.

    PubMed  CAS  Google Scholar 

  237. Farzaneh F, Zalin R, Brill D, Shall S: DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature(300): 362–366,1982.

    PubMed  CAS  Google Scholar 

  238. Sugimura T, Miwa N: Poly(ADP-ribose) and cancer research. Carcinogenesis (4):1503–1506, 1983.

    PubMed  CAS  Google Scholar 

  239. Milo G: In vitro transformation of human cells: modulation of early gene expression preceding carcinogen-induced events”.In:- Harris C, Autrup H (eds). Human Carcinogenesis, Academic Press, N.Y.1983 pp 431–449.

    Google Scholar 

  240. Kun E, Kirsten E, Milo G, Kurian P, Kumari H:Cell cycle dependent intervention and in vitro poly(ADP-ribosyl)ation of nuclear proteins in human fibroblasts. Proc Natl Acad Sci (80):7219–7223, 1983.

    PubMed  CAS  Google Scholar 

  241. Borek C, Morgan W, Ong A, Cleaver J: Inhibition of malignant transformation in vitro by inhibitors of poly ADP-ribose synthesis. Proc Natl Acad Sci (81):243–247, 1984.

    PubMed  CAS  Google Scholar 

  242. Takahashi S, Ohnishi T, Denda A, Konishi Y: Enhancing effect of 3-aminobenzamide on induction of γ-glutamyl transpeptidase positive foci in rat liver. Chem. Biol. Interactions (39):363–368, 1982.

    CAS  Google Scholar 

  243. Kasid U, Dritschila A, Lubet C, Smulson M: personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Cerutti, P.A. (1985). Active Oxygen and Promotion. In: Fischer, S.M., Slaga, T.J. (eds) Arachidonic Acid Metabolism and Tumor Promotion. Prostaglandins, Leukotrienes, and Cancer, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2605-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2605-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9631-7

  • Online ISBN: 978-1-4613-2605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics