Skip to main content

The Role of Arachidonic Acid Metabolites in the Regulation of Neutrophil Function

  • Chapter
Prostaglandins and Immunity

Part of the book series: Prostaglandins, Leukotrienes, and Cancer ((PLAC,volume 4))

Abstract

Acute inflammation is provoked by a wide variety of mediators. These mediators may affect vascular tone and permeability (e.g. histamine, serotonin), stimulate peripheral pain receptors (e.g. bradykinin), as well as attract and activate inflammatory cells (e.g. complement components, platelet activating factor). The release of mediators from such inflammatory cells (including metabolites of arachidonic acid, lysosomal proteases and oxygen-derived products such as superoxide anion) promote the permanent destructive tissue damage characteristic of the acute inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trang LE: Prostaglandins and Inflammation. Seminars Arth. & Rheum 9: 153–190, 1980

    Article  CAS  Google Scholar 

  2. Douglas WW: Involvement of calcium in exocytosis and the exocytosis vesiculation sequence. Biochem. Soc. Symp. (39):1–28, 1974.

    PubMed  CAS  Google Scholar 

  3. Putney JE: Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol. Rev. (30): 209–245, 1979

    Google Scholar 

  4. Goldstein IM, Horn JK, Kaplan HB, Weissmann G: Calcium induced lysozyme secretion from human polymorphonuclear leukocytes. Biochem. Biophys. Res. Comm. (60):807–812, 1974.

    Article  PubMed  CAS  Google Scholar 

  5. O’Flaherty JT, Showell HJ, Becker EL, Ward PA: Substances which activate neutrophils. Mechanism of action. Am. J. Path. (92):155–166, 1978.

    PubMed  Google Scholar 

  6. Smith RJ, Wierenga W, Iden S: Characteristics of N-formyl-methionyl-leucyl-phenylalanine as an inducer of lysosomal enzyme release from human neutrophils. Inflamm. (4):73–88, 1980

    Article  CAS  Google Scholar 

  7. Smolen JE, Korchak HM, Weissmann G: The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim. Biophys. Acta (677):512–520, 1981.

    CAS  Google Scholar 

  8. Malagodi MH, Chiou CY: Pharmacological evaluation of a new calcium antagonist 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8): Studies in smooth muscle. Eur. J. Pharmacol. (27):25–33, 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Pozzan T, Lew DP, Wollheim CB, Tsien RY: Is cytosolic ionized calcium regulating neutrophil activation? Science (221):1413–1415, 1983

    Article  PubMed  CAS  Google Scholar 

  10. Korchak HM, Vienne K, Rutherford LE, Wilkenfeld, C, Finkelstein MC, Weissmann G: Stimulus response coupling in the human neutrophil II Temporal analysis of changes in cytosolic calcium and calcium efflux. J. Biol. Chem. (259),4076–4082, 1984

    PubMed  CAS  Google Scholar 

  11. Sando JJ, Young MC: Identification of high-affinity phorbol ester receptor in cytosol of EL-4 thymoma cells: requirement for calcium, magnesium and phospholipids. Proc. Natl. Acad. Sci. USA (80):2642–2646, 1983

    Article  PubMed  CAS  Google Scholar 

  12. Smolen JE, Weissmann G: The effect of various stimuli and calcium antagonists on the fluorescence response of chlortetracycline-loaded human neutrophils. Biochim. Biophys. Acta (720):172–180, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Naccache PH, Showell HJ, Becker EL, Sha’afi RI: Involvement of membrane calcium in the responce of rabbit neutrophils to chemotactic factors as evidenced by the fluorescence of chlortetracycline. J. Cell Biol. (83):179–186, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Smolen JE, Korchak HM, Weissmann G: Increased levels of cyclic adenosine-3’,5’-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J. Clin. Invest. (65):1077–1085, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Berlin T, Petersen CS, Esmann V: The role of calcium and cyclic adenosine-3’,5’-monophosphate in the regulation of glycogen metabolism in phagocytosing human polymorphonuclear leukocytes. Biochim. Biophys. Acta (542):63–76, 1978.

    Google Scholar 

  16. Jackowski S, Sha’afi RI: Response of adenosine cyclic-3’,5’-monophosphate level in rabbit neutrophils to the chemotactic peptide formylmethionyl-leucylphenylalanine. Molec. Pharmacol. (16):473–481, 1979.

    CAS  Google Scholar 

  17. Simchowitz L, Fischbein LC, Spilberg I, Atkinson JP: Induction of a transient elevation in intracellular levels of adenosine 3’,5’-cyclic monophosphate by chemotactic factors: An early event in human neutrophil activation. J. Immunol. (124):1482–14911, 1980.

    PubMed  CAS  Google Scholar 

  18. Keller HU, Gerisch G, Wissler J: A transient rise in cyclic AMP levels following chemotactic stimulation of neutrophil granulocytes. Cell Biol. Internat. Reports (3):759–765, 1979.

    CAS  Google Scholar 

  19. Smolen JE, Weissmann G: Stimuli which provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3’-5’monophosphate. Biochim. Biophys. Acta (672):197–206, 1981.

    PubMed  CAS  Google Scholar 

  20. Simchowitz L, Spilberg I, Atkinson JP: Evidence that the functional responses of human neutrophils occur independently of transient elevations in cAMP levels. Fed. Proc. (42): 1080, 1983.

    Google Scholar 

  21. Zurier RB, Weissmann G, Hoffstein S, Kammerman S, Tai H: Mechanisms of lysosomal enzyme release from human leukocytes II. Effects of cAMP and cGMP, autonomic agonists and agents which affect microtubule function. J. Clin. Invest. (43):297–309, 1974.

    Article  Google Scholar 

  22. Rasmussen H. and Goodman DBP: Relationships between calcium and cyclic nucleotides in cell activation. Physiol. Rev. (57):421, 1977.

    PubMed  CAS  Google Scholar 

  23. Huang C-K, Hill Jr J, Mackin WM, Bormann BJ, Becker EL: Effects of chemotactic factors on the protein phosphorylation of rabbit peritoneal neutrophils. Fed. Proc. (92):1080, 1983.

    Google Scholar 

  24. Andrews PC, Babior BM: Endogenous protein phosphorylation by resting and activated human neutrophils. Blood (61):333–340, 1983.

    PubMed  CAS  Google Scholar 

  25. Niedel JE, Kuhn LJ, Vandenbark GR: Phorbol diester receptor copurifies with protein kinase C Proc. Natl. Acad. Sci. USA (80):36–40, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Kirk CJ: Ligand-stimulated inositol lipid metabolism in the liver: Relationship to receptor function. Cell Calcium (3): 399–412, 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Berridge MJ, Fain JN: Inhibition of phosphatidyl inositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem. J. (178): 58–69, 1979.

    Google Scholar 

  28. Karnovsky M L, Shafer AW, Cagan RH, Graham RC, Karnovsky MJ, Glass EA, Saito K: Membrane function and metabolism in phagocytic cells. Trans. N. Y. Acad. Sci. (28): 778–787, 1966.

    PubMed  CAS  Google Scholar 

  29. Sostry PS, Hokin LE: Studies on the role of phospholipids in phagocytosis. J. Biol. Chem. (241): 3354–3361, 1966.

    Google Scholar 

  30. Tou J-S, Stjernholm RL: Stimulation of the incorporation of 32Pi and myo(23H)-inositol into the phosphoinositides in polymorphonuclear leukocytes during phagocytosis. Arch. Biochem. (160): 487–494, 1974.

    CAS  Google Scholar 

  31. Tou J-S: Modulation of 32Pi incorporation into phospholipids of polymorphonuclear leukocytes by ionophore A23187. Biochim. Biophys. Acta (531): 167–178, 1978.

    Google Scholar 

  32. Cockcroft S, Bennett JP, Gomperts BD: F-Met-Leu-Phe-induced phosphatidyl inositol turnover in rabbit neutrophils is dependent on extracellular calcium. FEBS Letters (110): 115–118, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Serhan C, Korchak HM, Broekman J, Smolen JE, Marcus A, Weissmann G: Phosphatidyl inositol breakdown and phosphatidic acid accumulation in stimulated human neutrophils: Relationship to calcium mobilization and calcium uptake. Biochim. Biophys. Acta (In Press)

    Google Scholar 

  34. Bombardieri S et al: The synovial prostaglandin system in chronic inflammatory arthritis: Differential effects of steroidal and non-steroidal anti-inflammatory drugs. Br. J. Pharm. (73):893–901, 1981.

    CAS  Google Scholar 

  35. Dayer JM, Krane SM et al: Production of collagenase and prostaglandins by isolated adherent rheumatoid synovial cells. Proc. Natl Acad. Sci. USA (73):945–949, 1976.

    Article  PubMed  CAS  Google Scholar 

  36. Robinson DR et al: Prostaglandin-stimulated bone resorption by rheumatoid synovial. J. Clin. Invest. (56):1181, 1975.

    Article  PubMed  CAS  Google Scholar 

  37. Weissmann G, Smolen JE, Korchak H: Prostaglandins and Inflammation: Receptor/cyclase Coupling as an Explanation of why PGEs and PGI2 Inhibit Functions of Inflammatory Cells“ in Advances in Prostaglandins and Thromboxane Research, Vol. 8, B. Samuelsson, B., Ramwell, P.W. and Paoletti, R. eds, Raven Press, New York, pp 1637–1653, 1980.

    Google Scholar 

  38. Fantone JC, Kinnes DA: Prostaglandin E1 and Prostaglandin I2 modulation of superoxide production by human neutrophils. Biochem. Biophys. Res. Comm. (113): 506–512, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Wong K, Freund K: Inhibition of the n-formylmethionyl-leucyl-phenylalanine induced respiratory burst in human neutrophils by adrenergic agonists and prostaglandins of the E series Can. J. Physiol. Pharmacol. (59): 915–92L, 1981.

    Article  CAS  Google Scholar 

  40. Spisani S, Vicenzi E, Traniello S, Pollini G P., Barco A: Synthetic prostaglandin analogue: In vitro studies on human neutrophils. Immunopharmacol (4): 323–330, 1982.

    Article  CAS  Google Scholar 

  41. O’Flaherty JT, Kreutzer DL, Ward PA: Effect of Prostaglandins E1, E2 and F2a on Neutrophil aggregation Prostaglandins (17): 201–209, 1979.

    Google Scholar 

  42. Camussi G, Tetta C, Bussolino F, Cappio FC, Coda R, Masers C, Segoloni G: Mediators of immune-complex -induced aggregation of polymorphonuclear neutrophils II. Platelet-activating factor as the effector substances of immune-induced aggregation. Int. Archs. Allergy Appl. Immun. (64): 25–41, 1981.

    Article  CAS  Google Scholar 

  43. Lew PD, Dayer J-M, Wollheim CB, Pozzan T: Effect of leukotriene B4, prostaglandin E2 and arachidonic acid on cytosolic-free calcium in human neutrophils. FEBS Letts. (166): 44–48, 1984.

    Article  CAS  Google Scholar 

  44. Abramson S, Korchak H, Kimmel S, Roberts C, Wilkenfeld C, Haines K, Rich A, Rider L, Weissmann G: The cellular effects of nonsteroidal antiinflammatory drugs (NSAID) cannot be due to inhibition of prostaglandin (PG) release. Arth. Rheum. (27):S22, 1984.

    Google Scholar 

  45. Smolen JE: The fluorescence response of chlortetracycline-loaded human neutrophils is modulated by prostaglandin E1, but not by cyclic nucleotides. FEBS Letts. (163): 119–123, 1983.

    Article  CAS  Google Scholar 

  46. Stenson WF, Parker CW: Metabolism of arachidonic acid in ionophore-stimulated neutrophils. J. Clin. Invest. (64):1457–1465, 1979.

    Article  PubMed  CAS  Google Scholar 

  47. Serhan CN, Smolen JE, Korchak HM, Weissmann G: Leukotriene B4 is a complete secretagogue in human neutrophils: Ca2+ translocation in liposome and kinetics of neutrophil activation. In: Samuelsson B, Paoletti R, Ramwell P (ed) Adv. Prostaglandin and Thromboxane Res. Raven Press, New York, 1983, pp 53–63.

    Google Scholar 

  48. Serhan CN, Fridovich J, Goetzl EJ, Dunham PB, Weissmann G: Leukotriene B4 and phosphatidic acid are calcium ionophores. J. Biol. Chem. (257):4746–4752, 1982.

    PubMed  CAS  Google Scholar 

  49. Serhan CN, Lundberg U, Weissmann G, Samuelsson B: Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins (27):563–581, 1984.

    Article  PubMed  CAS  Google Scholar 

  50. Less CW, Lewis K, Austen F, Corey EJ: Oxidative inactivation of the sulfidopeptide leukotrienes by human polymorphonuclear leukocytes (PMNs). Fed. Proc. (42): 1080–1084, 1983.

    Google Scholar 

  51. Stenson WF, Parker CW: Monohydroxyeicosatetraenoic acids (HETEs) induce degranulation of human neutrophils. J. Immunol. (124):2100–2104, 1980.

    PubMed  CAS  Google Scholar 

  52. Goetzl EJ, Brash AR, Tauber AI, Oates JA, Hubbard WC: Modulation of human neutrophil function by monohydroxyeicosatetraenoic acids. Immunology 39:491–501, 1980.

    PubMed  CAS  Google Scholar 

  53. Goetzl EJ, Sun FF: Generation of unique monohydroxyeicosatetraenoic acids from arachidonic acid by human neutrophils. J. Exp. Med. 150:460

    Google Scholar 

  54. Bray MA, Ford-Hutchinson AW, Smith MJH: Leukotriene BS: Biosynthesis and biologic activity. In: SRS-A and Leukotrienes (Piper, PJ, ed.) Chichester, Research Studies Press, Inc., pp 253–270, 1981.

    Google Scholar 

  55. Smith MJH, Ford-Hutchinson AW, Bray MA: Leukotriene B: A potential mediator of inflammation. J. Pharm. Pharmacol. (32):517–518, 1982.

    Article  Google Scholar 

  56. Higgs GA, Bax CMP, Moncada S: Inflammatory properties of lipoxygenase products and the effects of indomethacin and BW 755 c on prostaglandin production, leukocyte migration and plasma exudation in rabbit Skin. In. Adv. Prostaglandin Thromboxane Leukotriene Res. Raven Press, New York, (9), pp 331–339, 1982.

    Google Scholar 

  57. Malmsten CL, Palmblad J, Uden A-M, Radmark O Engstedt L, Samuelsson B: Leukotriene B4: A highly potent stereospecific factor stimulating migration of polymorphonuclear leukocytes of different species. Prostaglandins (20):411–418, 1980.

    Article  Google Scholar 

  58. Bhattacherjee P, Hammond B, Salmon JA, Stepney P, Eakins KE: Chemotactic response to some arachidonic acid lipoxygenase products in the rabbit eye. Eur. J. Pharmacol. (73):21–28, 1981.

    Article  PubMed  CAS  Google Scholar 

  59. Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ: Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature (286):264–265, 1980.

    Article  PubMed  CAS  Google Scholar 

  60. Dahlen S-E, Bjork J, Hedqvist P, Arfors K-E, Hammarstrom S, Lindgren J-A, Samuelsson B: Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response. Proc. Natl. Acad. Sci. USA (78):3887–3891, 1981

    Article  PubMed  CAS  Google Scholar 

  61. Bray MA, Cunningham FM, Ford-Hutchinson AW, Smith MJH: Leukotriene B4: A mediator of vascular permeability. Br. J. Pharmacol. (72):483–486, 1981.

    PubMed  CAS  Google Scholar 

  62. Williams TJ, Jose PJ, Wedmore CV, Peck MJ, Forest MJ: Mechanisms underlying inflammatory edema: The importance of synergism between prostaglandins, leukotrienes and complement derived peptides. In: Adv. Prostaglandin and Thromboxane Res., Raven Press, New York, 11: 33–37, 1983.

    Google Scholar 

  63. Kreisle R, Parker C: Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes. J. Exp. Med. (157):628–641, 1983.

    Article  PubMed  CAS  Google Scholar 

  64. Ham EA, Soderman DD, Zanetti ME, Dougherty HW, McCauley E, Kuehl FA: Inhibition by prostaglandins of leukotriene B4 release from activated neutrophils. Proc. Natl. Acad. Sci. USA (80):4349–4353, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Korchak, H.M., Abramson, S.B. (1985). The Role of Arachidonic Acid Metabolites in the Regulation of Neutrophil Function. In: Goodwin, J.S. (eds) Prostaglandins and Immunity. Prostaglandins, Leukotrienes, and Cancer, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2603-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2603-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9630-0

  • Online ISBN: 978-1-4613-2603-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics