Advertisement

The Ventricle pp 105-121 | Cite as

Autonomic Reflex Control of Cardiac Contractility

  • Alan M. Fujii
  • Stephen F. Vatner

Abstract

Cardiovascular reflexes play a major role in the rapid, moment-to-moment circulatory response to stress. These reflex responses arise from a variety of chemoreceptors and mechanoreceptors that transmit information centrally. The efferent information is then conveyed peripherally via sympathetic and parasympathetic nerves and by catecholamines and other secreted hormones to induce changes in the cardiovascular system. The goal of this chapter is to describe the effects of these neurally mediated reflexes on left ventricular function. In particular we will summarize (1) the efferent actions of the sympathetic and parasympathetic nerves, and of parasympathetic-sympathetic interactions on left ventricular function and (2) information regarding the afferent receptors and nerves that initiate the cardiovascular reflexes. In addition, since the results obtained from experiments in anesthetized animals may be difficult to interpret, due to the altered inotropic state induced by recent surgery [1, 2] and possible alteration of cardiovascular reflexes by the effects of general anesthesia [3], an emphasis is placed on information from experiments conducted in man or in conscious, chronically instrumented animals, when such data are available.

Keywords

Vagal Stimulation Carotid Body Cardiac Contractility Inotropic Response Arterial Baroreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manders, W.T. and Vatner, S.F. Effects of sodium pentobarbital anesthesia on left ventricular function and distribution of cardiac output in dogs, with particular reference to the mechanism for tachycardia. Circ. Res. 39: 512–517, 1976.PubMedGoogle Scholar
  2. 2.
    Vatner, S.F. and Smith, N.T. Effects of halo-thane on left ventricular function and distribution of regional blood flow in dogs and primates. Circ. Res. 34: 155–167, 1974.PubMedGoogle Scholar
  3. 3.
    Vatner, S.F. and Braunwald, E. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293: 970–976, 1975.PubMedGoogle Scholar
  4. 4.
    Mizeres, N.J. The anatomy of the autonomic nervous system in the dog. Am. J. Anat. 96: 285–318, 1955.PubMedGoogle Scholar
  5. 5.
    Mizeres, NJ. Isolation of the cardioinhibitory branches of the right vagus nerve in the dog. Anat. Rec. 123: 437–445, 1955.PubMedGoogle Scholar
  6. 6.
    Mizeres, NJ. The course of the left cardioinhibitory fibers in the dog. Anat. Rec. 127: 109116, 1957.Google Scholar
  7. 7.
    Mizeres, NJ. The origin and course of the cardioaccelerator fibers in the dog. Anat. Rec. 132: 261–279, 1958.PubMedGoogle Scholar
  8. 8.
    Mizeres, NJ. The cardiac plexus in man. Amer. J. Anat. 112: 141–151, 1963.Google Scholar
  9. 9.
    Randall, W.C., Wechsler, J.S., Pace, J.B., and Szentivanyi, M. Alterations in myocardial contractility during stimulation of the cardiac nerves. Am. J. Physiol. 214: 1205–1212, 1968.PubMedGoogle Scholar
  10. 10.
    Randall, W.C. and Armour, J.A. Regional vagosympathetic control of the heart. Am. J. Physiol. 227: 444–452, 1974.PubMedGoogle Scholar
  11. 11.
    Levy, M.N. and Martin, PJ. Neural Control of the Heart. In Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1, The Heart, Berne, R.M., Sperelakis, N., and Geiger, S.R. (eds.). Bethesda; American Physiology Society, 1979, pp. 581–620.Google Scholar
  12. 12.
    Wiggers, CJ. and Katz, L.N. The specific influence of the accelerator nerves on the duration of ventricular systole. Am. J. Physiol. 53: 49–64, 1920.Google Scholar
  13. 13.
    Shipley, R.E. and Gregg, D.E. The cardiac response to stimulation of the stellate ganglia and cardiac nerves. Am. J. Physiol. 143: 396–401, 1945.Google Scholar
  14. 14.
    Kelso, A.F. and Randall, W.C. Ventricular changes associated with sympathic augmentation of cardiovascular pressure pulses. Am. J. Physiol. 196: 731–734, 1959.PubMedGoogle Scholar
  15. 15.
    Feigl, E.O. Parasympathetic control of coronary blood flow in dogs. Circ. Res. 25: 509–519, 1969.PubMedGoogle Scholar
  16. 16.
    Higgins, C.B., Vatner, S.F., and Braunwald, E. Parasympathetic control of the heart. Pharmacol. Rev. 25: 119–155, 1973.PubMedGoogle Scholar
  17. 17.
    Guyton, A.C. Textbook of Medical Physiology, 4th ed. Philadelphia: W.B. Saunders, 1971, pp. 157–158.Google Scholar
  18. 18.
    Sarnoff, S.J. and Mitchell, J.H. The Control of the Function of the Heart. In Handbook of Physiology, Sec. 2, Circulation, Vol. 1, Hamilton, W.F. (ed.). Washington D.C.; American Physiological Society, 1962, pp. 489–532.Google Scholar
  19. 19.
    DeGeest, H., Levy, M.N. and Zieske, H. Negative inotropic effects of the vagus nerve upon the canine ventricle. Science 144: 1223–1225, 1964.PubMedGoogle Scholar
  20. 20.
    DeGeest, H., Levy, M.N., Zieske, H., and Lipman, R.I. Depression of ventricular contractility by stimulation of the vagus nerves. Circ. Res. 17: 222–235, 1965.PubMedGoogle Scholar
  21. 21.
    Daggett, W.M., Nugent, G.C., Carr, P.W., Powers, P.C., and Harada, Y. Influence of vagal stimulation on ventricular contractility, 02 consumption and coronary flow. Am. J. Physiol. 212: 8–18, 1967.PubMedGoogle Scholar
  22. 22.
    Wildenthal, K., Mierzwiak, D.S., Wyatt, H.L., and Mitchell, J.H. Influence of efferent vagal stimulation on left ventricular function in dogs. Am. J. Physiol. 216: 577–581, 1969.PubMedGoogle Scholar
  23. 23.
    Furnival, C.M., Linden, R.J., and Snow, H.M. The inotropic effect on the heart of stimulating the vagus in the dog, duck and toad. J. Physiol. (London) 230: 155–170, 1973.PubMedGoogle Scholar
  24. 24.
    Harman, M.A. and Reeves, TJ. Effects of efferent vagal stimulation on atrial and ventricular function. Am. J. Physiol. 215: 1210–1217, 1968.PubMedGoogle Scholar
  25. 25.
    Pace, J.B., Randall, W.C., Wechsler, J.S., and Priola, D.V. Alterations in ventricular dynamics induced by stimulation of the cervical vagosympathetic trunk. Am. J. Physiol. 214: 1213–1218, 1968.PubMedGoogle Scholar
  26. 26.
    Jacobowitz, D., Cooper, T., and Barner, H.B. Histochemical and chemical studies of the localization of adrenergic and cholinergic nerves in normal and denervated cat hearts. Circ. Res. 20: 289–298, 1967.PubMedGoogle Scholar
  27. 27.
    Kent, K.M., Epstein, S.E., Cooper, T., and Jacobowitz, D.M. Cholinergic innervation of the canine and human conducting system. Circulation 50: 948–955, 1974.PubMedGoogle Scholar
  28. 28.
    Wei, J. and Sulakhe, P.V. Regional and subcellular distribution of myocardial muscarinic cholinergic receptors. Eur. J. Pharmacol. 52: 235238, 1978.Google Scholar
  29. 29.
    Vatner, S.F., Rutherford, J.D., and Ochs, H.R. Baroreflex and vagal mechanisms modulating left ventricular contractile responses to sympathomimetic amines in conscious dogs. Circ. Res. 44: 195–207, 1979.PubMedGoogle Scholar
  30. 30.
    Blukoo-Allotey, J.A., Vincent, N.H., and Ellis, S. Interactions of acetylcholine and epinephrine on contractility, glycogen and phosphorylase activity of isolated mammalian hearts. J. Pharmacol. Exp. Ther. 170: 27–36, 1969.PubMedGoogle Scholar
  31. 31.
    LaRaia, P.J. and Sonnenblick, E.H. Autonomic control of cardiac cAMP. Circ. Res. 28: 377–384, 1971.PubMedGoogle Scholar
  32. 32.
    Watanabe, A.M. and Besch, H.R., Jr. Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ. Res. 37: 309–317, 1975.PubMedGoogle Scholar
  33. 33.
    Levy, M.N. Parasympathetic Control of the Heart. In Neural Regulation of the Heart, Randall, W.C. (ed.). New York: Oxford University Press, 1977, pp. 95–129.Google Scholar
  34. 34.
    Levy, M.N. and Martin, P. Parasympathetic Control of the Heart. In Nervous Control of Cardiovascular Function, Randall, W.C. (ed.). New York: Oxford University Press, 1984, pp. 68–94.Google Scholar
  35. 35.
    Cooper, T. Terminal Innervation of the Heart. In Nervous Control of the Heart, Randall, W.C. (ed.). Baltimore: Williams & Wilkins, 1965, pp. 130–153.Google Scholar
  36. 36.
    Levy, M.N. Neural Control of the Heart: Sympathetic-Vagal Interactions. In Cardiovascular System Dynamics, Baan, J., Noordergraaf, A., and Raines, J. (eds.). Cambridge, Mass: MIT Press, 1978, pp. 365–370.Google Scholar
  37. 37.
    Schwegler, M. Sympathetic-parasympathetic interactions on the ventricular myocardium: Possible role of cyclic nucleotides. Basic Res. Cardiol. 69: 215–221, 1974.PubMedGoogle Scholar
  38. 38.
    Watanabe, A.M. Cellular Mechanisms of Muscarinic Regulation of Cardiac Function. In Nervous Control of Cardiovascular Function, Randall, W.C. (ed.). New York: Oxford University Press, 1984, pp. 130–164.Google Scholar
  39. 39.
    Levy, M.N., Ng, M., Martin, P., and Zieske, H. Sympathetic and parasympathetic interactions upon the left ventricle of the dog. Circ. Res. 19: 5–10, 1966.Google Scholar
  40. 40.
    Levy, M.N. and Zieske, H. Comparison of the cardiac effects of vagus nerve stimulation and of acetylcholine infusions. Am. J. Physiol. 216: 890–897, 1969.PubMedGoogle Scholar
  41. 41.
    Levy, M.N. and Blattberg, B. Effect of vagal stimulation in the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ. Res. 38: 81–85, 1976.PubMedGoogle Scholar
  42. 42.
    Martin, P.J., Levy, M.N., and Zieske, H. Analysis and simulation of the left ventricular response to autonomic nervous activity. Cardiovasc. Res. 3: 396–410, 1969.PubMedGoogle Scholar
  43. 43.
    Muscholl, E. Peripheral muscarinic control of norepinephrine release in the cardiovascular system. Am. J. Physiol. 239: H713 - H720, 1980.PubMedGoogle Scholar
  44. 44.
    Vanhoutte, P.M. and Levy, M.N. Prejunctional cholinergic modulation of adrenergic neurotransmission in the cardiovascular system. Am. J. Physiol. 238: H275 - H281, 1980.PubMedGoogle Scholar
  45. 45.
    Lavallee, M., de Champlain, J., Nadeau, R.A., and Yamaguchi, N. Muscarinic inhibition of endogenous myocardial catecholamine liberation in the dog. Can. J. Physiol. Pharmacol. 56: 642–649, 1978.PubMedGoogle Scholar
  46. 46.
    Lavallee, M., de Champlain, J., and Nadeau, R.A. Reflexly induced inhibition of catecholamine release through a peripheral muscarinic mechanism. Can. J. Physiol. Pharmacol. 58: 1334–1341, 1980.PubMedGoogle Scholar
  47. 47.
    Hollenberg, M., Carriere, S., and Barger, A.C. Biphasic action of acetylcholine on ventricular myocardium. Circ. Res. 16: 527–536, 1965.PubMedGoogle Scholar
  48. 48.
    Chamales, M.H., Gourley, R.D., and Williams, Bj. Effect of acetyl choline on changes in contractility, heart rate and phosphorylase activity produced by isoprenaline, salbutamol, and aminophylline in the perfused guinea-pig heart. Br. J. Pharmacol. 53: 531–538, 1975.PubMedGoogle Scholar
  49. 49.
    Meester, W.D. and Hardman, H.F. Blockade of the positive inotropic actions of epinephrine and theophylline by acetylcholine. J. Pharmacol. Exp. Ther. 158: 241–247, 1967.PubMedGoogle Scholar
  50. 50.
    Vatner, S.F., Rutherford, J.D., Priano, L.L., Manders, W.T., and Ochs, H.R. Parasympatholytic augmentation of inotropic response to infused but not neurally released norepinephrine. Fed. Proc. 37: 3242, 1978. (Abstract)Google Scholar
  51. 51.
    Rutherford, J.D. and Vatner, S.F. Integrated carotid chemoreceptor and pulmonary inflation reflex control of peripheral vasoactivity in conscious dogs. Circ. Res. 43: 200–208, 1978.PubMedGoogle Scholar
  52. 52.
    Vatner, S.F. and Rutherford, J.D. Interaction of carotid chemoreceptor and pulmonary inflation reflexes in circulatory regulation in conscious dogs. Fed. Proc. 40: 2188–2193, 1981.PubMedGoogle Scholar
  53. 53.
    Sarnoff, SJ., Gilmore, J.P., Brockman, S.R., Mitchell, J.H., and Linden, R.J. Regulation of ventricular contraction by the carotid sinus: Its effect on atrial and ventricular dynamics. Circ. Res. 8: 1123–1136, 1960.PubMedGoogle Scholar
  54. 54.
    Glick, G. Importance of the carotid sinus baroreceptors in the regulation of myocardial performance. J. Clin. Invest. 50: 1116–1123, 1971.PubMedGoogle Scholar
  55. 55.
    Kostiuk, D.P., Sagawa, K., and Shoukas, A.A. Modification of the flow-generating capability of the canine heart-lung compartment by the carotid sinus baroreceptor reflex. Circ. Res. 38: 546–553, 1976.PubMedGoogle Scholar
  56. 56.
    Bronk, D.W., Ferguson, L.K., Margaria, R., and Solandt, D.Y. The activity of the cardiac sympathetic centers. Am. J. Physiol. 117: 237–249, 1936.Google Scholar
  57. 57.
    Downing, S.E. and Siegel, J.H. Baroreceptor and chemoreceptor influences on sympathetic discharge to the heart. Am. J. Physiol. 204: 471–479, 1963.Google Scholar
  58. 58.
    Ninomiya, I.N., Nisimaru, N., and Irisawa, H. Sympathetic nerve activity to the spleen, kidney and heart in response to baroreceptor input. Am. J. Physiol. 221: 1346–1351, 1971.PubMedGoogle Scholar
  59. 59.
    Vatner, S.F., Pagani, M., Rutherford, J.D., Millard, R.W., and Manders, W.T. Effects of nitroglycerin on-cardiac function and regional blood flow distribution in conscious dogs. Am. J. Physiol. 234: H244 - H252, 1978.PubMedGoogle Scholar
  60. 60.
    Hintze, T.H. and Vatner, S.F. Comparison of effects of nifedipine and nitroglycerin on large and small coronary arteries and cardiac function in conscious dogs. Circ. Res. 52 (Suppl. I): 139–146, 1983.Google Scholar
  61. 61.
    Vatner, S.F., Higgins, C.B., Franklin, D., and Braunwald, E. Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. J. Clin. Invest. 51: 995–1008, 1972.PubMedGoogle Scholar
  62. 62.
    Hintze, T.H. and Vatner, S.F. Cardiac dynamics during hemorrhage. Relative unimportance of adrenergic inotropic responses. Circ. Res. 50: 705–713, 1982.PubMedGoogle Scholar
  63. 63.
    Vatner, S.F., Franklin, D., Higgins, C.B., Patrick, T., and Braunwald, E. Left ventricular response to severe exertion in untethered dogs. J. Clin. Invest. 51: 3052–3060, 1972.PubMedGoogle Scholar
  64. 64.
    DeGeest, H., Levy, M.N., and Zieske, H. Carotid sinus baroreceptor reflex effects upon myocardial contractility. Circ. Res. 15: 327–342, 1964.PubMedGoogle Scholar
  65. 65.
    Green, J.H. Cardiac vagal efferent activity in the cat. J. Physiol. (London) 149:47P–49P, 1959.Google Scholar
  66. 66.
    Downing, S.E. Baroreceptor Regulation of the Heart. In Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1, The Heart, Berne, R.M., Sperelakis, N., and Geiger, S.R. (eds.). Bethesda: American Physiological Society, 1979, pp. 621–652.Google Scholar
  67. 67.
    Vatner, S.F., Franklin, D., and Braunwald, E. Effects of anesthesia and sleep on circulatory response to carotid sinus nerve stimulation. Am. J. Physiol. 220: 1249–1255, 1971.PubMedGoogle Scholar
  68. 68.
    DeCastro, F. Sur la structure et l’innervation du sinus carotidien de l’hommes et des mammiferes. Nouveaux faits sur l’innervation et la fonction du glomus caroticum. Etudes anatomiques et physiologiques. Trabajos. Lab. Invest. Biol. Univ. Madrid 25: 331–380, 1928.Google Scholar
  69. 69.
    Heymans, J.F., and Heymans, C. Sur les modifications directes et sur la regulation reflexe de l’activite du centre respiratoire de la tete isolee du chien. Arch. Intern. Pharmacodyn. 33: 272–370, 1927.Google Scholar
  70. 70.
    Coleridge, H.M., Coleridge,J.C.G., and Howe, A. A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the new-born and adult animal. J. Physiol. (London) 191: 353–374, 1967.PubMedGoogle Scholar
  71. 71.
    Coleridge, J.C.G. and Coleridge, H.M. Chemoreflex Regulation of the Heart. In Handbook of Physiology, Sec. 2, The Cardiovascular System, Vol. 1, The Heart, Berne, R.M., Sperelakis, N., and Geiger, S.R. (eds.). Bethesda: American Physiological Society, 1979, pp. 653–676.Google Scholar
  72. 72.
    Howe, A. The vasculature of the aortic bodies in the cat. J. Physiol. (London) 134: 311–318, 1956.PubMedGoogle Scholar
  73. 73.
    Biscoe, TJ. Carotid body: Structure and function. Physiol. Rev. 51: 437–495, 1971.PubMedGoogle Scholar
  74. 74.
    Howe, A. and Neil, E. Arterial Chemoreceptors. In Handbook of Sensory Physiology, Enteroceptors, Vol. 3, Pt 1, Neil, E. (ed.). Berlin: Springer-Verlag, 1972, pp. 47–80.Google Scholar
  75. 75.
    Torrance, R.W. Arterial Chemoreceptors. In MTP International Review of Science, Respiratory Physiology, Ser. 1, Vol. 2, Widdicombe, J.G. (ed.). Baltimore: University Park Press, 1974, pp. 247–271.Google Scholar
  76. 76.
    Daly, M. deB. and Scott, Mj. The effects of stimulation of the carotid body chemoreceptors on heart rate in the dog. J. Physiol. (London) 144: 148–166, 1958.Google Scholar
  77. 77.
    Daly, M. deB. and Scott, M J. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J. Physiol. (London) 162: 555–573, 1962.Google Scholar
  78. 78.
    Daly, M. deB. and Scott, M J. The cardiovascular responses to stimulation of the carotid body chemoreceptors in the dog. J. Physiol. (London) 165: 179–197, 1963.PubMedGoogle Scholar
  79. 79.
    Scott, M.J. The effects of hyperventilation on the reflex cardiac response from the carotid bodies in the cat. J. Physiol. (London) 186: 307–320. 1966.PubMedGoogle Scholar
  80. 80.
    Bernthal, T., Greene, W., Jr., and Revzin, A.M. Role of carotid chemoreceptors in hypoxic cardiac acceleration. Proc. Soc. Exptl. Biol. Med. 76: 121–124, 1951.Google Scholar
  81. 81.
    Anrep, G.V., Pascual, W., and Rossler, R. Respiratory variation of the heart rate. II. The central mechanism of the respiratory arrhythmia and the inter-relations between the central and reflex mechanisms. Proc. Roy. Soc. Lond. Ser. B. 119: 218–230, 1936.Google Scholar
  82. 82.
    Daly, M. deB. and Hazzledine, J.L. The effects of artificially induced hyperventilation on the primary cardiac reflex response to stimulation of the carotid bodies in the dog. J. Physiol. (London) 168: 872–889, 1963.PubMedGoogle Scholar
  83. 83.
    DeGeest, H., Levy, M.N., and Zieske, H. Carotid chemoreceptor stimulation and ventricular performance. Am. J. Physiol 209: 564–570, 1965.Google Scholar
  84. 84.
    Downing, S.E., Remensnyder, J.P., and Mitchell, J.H. Cardiovascular responses to hypoxemic stimulation of the carotid bodies. Circ. Res. 10: 676–685, 1962.PubMedGoogle Scholar
  85. 85.
    Hainsworth, R., Karim, F., and Sofola, O.A. Left ventricular inotropic responses to stimulation of carotid body chemoreceptors in anesthetized dogs. J. Physiol. (London) 287: 455–466, 1979.PubMedGoogle Scholar
  86. 86.
    Karim, F., Hainsworth, R., Sofola, O.A., and Wood, L.M. Responses of the heart to stimulation of aortic body chemoreceptors in dogs. Circ. Res. 46: 77–83, 1980.PubMedGoogle Scholar
  87. 87.
    Stern, S. and Rapaport, E. Comparison of the reflexes elicited from combined or separate stimulation of the aortic and carotid chemoreceptors on myocardial contractility, cardiac output and systemic resistance. Circ. Res. 20: 214–227, 1967.PubMedGoogle Scholar
  88. 88.
    Kahler, R.L., Goldblatt, A., and Braunwald, E. The effects of acute hypoxia on the systemic venous and arterial systems and on myocardial contractile force. J. Clin. Invest. 41: 1553–1563, 1962.PubMedGoogle Scholar
  89. 89.
    Pace, J.B. Influence of carotid chemoreceptor stimulation on ventricular dynamics. Am. J. Physiol. 218: 1687–1696, 1970.PubMedGoogle Scholar
  90. 90.
    Zimpfer, M., Sit, S.P., and Vatner, S.F. Effects of anesthesia on the canine carotid chemoreceptor reflex. Circ. Res. 48: 400–406, 1981.PubMedGoogle Scholar
  91. 91.
    Bezold, A., von, Hirt, L. Uber die physiologischen Wirkungen des essigsauren Veratrius. Unters. Physiol. Lab. Wurzburg. 1:75–156, 1867.Google Scholar
  92. 92.
    Jarisch, A. and Richter, H. Der Bezold-Effekt eine vergessene kreislaufreaktion. Klin. Wochens. 18: 185–187, 1939.Google Scholar
  93. 93.
    Jarisch, A. and Zotterdam, Y. Depressor reflexes from the heart. Acta. Physiol. Scand. 16: 31–51, 1949.Google Scholar
  94. 94.
    Zucker, I.H. and Cornish, K.G. The Bezold Jarisch reflex in the conscious dog. Circ. Res. 49: 940–948, 1981.PubMedGoogle Scholar
  95. 95.
    Thoren, P.N. Activation of left ventricular receptors with nonmedullated vagal afferent fibers during occlusion of a coronary artery in the cat. Am. J. Cardiol. 37: 1046–1051, 1976.PubMedGoogle Scholar
  96. 96.
    Thames, M.D., Klopfenstein, H.S., Abboud, F.M., Mark, A.L., and Walker, J.L. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle during coronary occlusion in the dog. Circ. Res. 43: 512–519, 1978.PubMedGoogle Scholar
  97. 97.
    Kezdi, P., Kordenat, R.K., and Misra, S.N. Reflex inhibitory effects of vagal afferents in experimental myocardial infarction. Am. J. Cardiol. 33: 853–860, 1974.PubMedGoogle Scholar
  98. 98.
    Ascanio, G., Barrera, F., Lautsch, E.V., and Oppenheimer, Mj. Role of reflexes following myocardial necrobiosis. Am. J. Physiol. 209: 1081–1088, 1965.PubMedGoogle Scholar
  99. 99.
    Chadda, K.D., Lichstein, E., Gupta, P.K., and Choy, R. Bradycardia-hypotension syndrome in acute myocardial infarction. Reappraisal of the overdrive effects of atropine. Am. J. Med. 59: 158–164, 1975.PubMedGoogle Scholar
  100. 100.
    Kolata, T., Ascanio, G., Tallarida, RJ., and Oppenheimer, MJ. Action potentials in the sensory vagus at the time of coronary infarction. Am. J. Physiol. 213: 71–78, 1967.Google Scholar
  101. 101.
    Scheinman, M.M., Thorburn, D., and Abbott, J.A. Use of atropine in patients with acute myocardial infarction and sinus bradycardia. Circulation 52: 627–633, 1975.PubMedGoogle Scholar
  102. 102.
    Thoren, P. Left ventricular receptors activated by severe asphyxia and by coronary artery occlusion. Acta. Physiol. Scand. 85: 455–463, 1972.PubMedGoogle Scholar
  103. 103.
    Toubes, D.B. and Brody,, M.J. Inhibition of reflex vasoconstriction after experimental coronary embolization in the dog. Circ. Res. 26: 211–224, 1970.PubMedGoogle Scholar
  104. 104.
    Hageman, G.R., and Urthaler, James, T.N. Neural pathways of the cardiogenic hypertensive chemoreflex. Am. J. Physiol. 235: H345 - H349, 1978.PubMedGoogle Scholar
  105. 105.
    Hageman, G.R., Urthaler, F., Swatzell, Jr., and James, T.N. Analysis of sympathetic discharges during cardiogenic hypertensive chemoreflex. Am. J. Physiol. 238: H61 - H65, 1980.PubMedGoogle Scholar
  106. 106.
    James, T.N., Isobe, J.H., and Urthaler, F. Analysis of components in a cardiogenic hypertensive chemoreflex. Circulation 52: 179–192, 1975.PubMedGoogle Scholar
  107. 107.
    Urthaler, F., Hageman, G.R., and James, T.N. Hemodynamic components of a cardiogenic hypertensive chemoreflex in dogs. Circ. Res. 42: 135–142, 1978.PubMedGoogle Scholar
  108. 108.
    Zucker, I.H. and Cornish, K.G. Reflex cardiovascular and respiratory effects of seroton in inconscious and anesthetized dogs. Circ. Res. 47: 509–515, 1980.PubMedGoogle Scholar
  109. 109.
    Cornish, K.G. and Zucker, I.H. Is there a serotonin-induced hypertensive coronary chemoreflex in the nonhuman primate? Circ. Res. 52: 312–318, 1983.PubMedGoogle Scholar
  110. 110.
    Cornish, K.G. and Zucker, I.H. Is there a serotonin-induced hypertensive coronary chemoreflex in the nonhuman primate? Circ. Res. 52: 312–318, 1983.PubMedGoogle Scholar
  111. 111.
    Brown, A.M. and Malliani, A. Spinal sympathetic reflexes initiated by coronary receptors. J. Physiol. (London) 212: 685–705, 1971.PubMedGoogle Scholar
  112. 112.
    Malliani, A., Peterson, D.F., Bishop, V.S., and Brown, A.M. Spinal sympathetic cardiocardiac reflexes. Circ. Res. 30: 158–166, 1972.PubMedGoogle Scholar
  113. 113.
    Malliani, A., Recordati, G., and Schwartz, P.J. Nervous activity of afferent cardiac sympathetic fibers with atrial and ventricular endings. J. Physiol. 229: 457–469, 1973.PubMedGoogle Scholar
  114. 114.
    Peterson, D.F. and Brown, A.M. Pressor reflexes produced by stimulation of afferent fibers in the cardiac sympathetic nerves of the cat. Circ. Res. 28: 605–610, 1971.PubMedGoogle Scholar
  115. 115.
    Malliani, A., Schwartz, P.H., and Zanchetti, A. A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217: 703–709, 1969.PubMedGoogle Scholar
  116. 116.
    Brown, A.M. Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia. J. Physiol. (London) 190: 35–53, 1967.PubMedGoogle Scholar
  117. 117.
    Kimura, E., Hashimoto, K., Furukawa, S., and Hayakawa, H. Changes in bradykinin level in coronary sinus blood after the experimental occlusion of a coronary artery. Am. Heart. J. 85: 635–647, 1973.PubMedGoogle Scholar
  118. 118.
    Kaufman, M.P., Baker, D.G., Coleridge, H.M., and Coleridge, J.C.G. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ. Res. 46: 476–484, 1980.PubMedGoogle Scholar
  119. 119.
    Baker, D.G., Coleridge, H.M., Coleridge, J.C.G., and Nerdrum, T. Search for a cardiac nociceptor: Stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. J. Physiol. 306: 519–536, 1980.PubMedGoogle Scholar
  120. 120.
    Lombardi, F., Della Bella, P., Casati, R., and Malliani, A. Effects of intracoronary administration of bradykinin on the impulse activity of afferent sympathetic unmyelinated fibers with left ventricular endings in the cat. Circ. Res. 48: 69–75, 1981.PubMedGoogle Scholar
  121. 121.
    Uchida, Y. and Murao, S. Bradykinin-induced excitation of afferent cardiac sympathetic nerve fibers. Jap. Heart J. 15: 84–91, 1974.PubMedGoogle Scholar
  122. 122.
    Lombardi, F., Patton, C.P., Bell, P.D., Pagani, M., and Malliani, A. Cardiovascular and sympa- thetic responses reflexly elicited through the excitation with bradykinin of sympathetic and vagal cardiac sensory endings in the cat. Cardiovasc. Res. 16: 57–65, 1982.PubMedGoogle Scholar
  123. 123.
    Donald, D.E. and Shepherd, J.T. Reflexes from the heart and lungs: Physiological curiosities or important regulatory mechanisms. Cardiovasc. Res. 12: 449–469, 1978.Google Scholar
  124. 124.
    Paintal, A.S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.PubMedGoogle Scholar
  125. 125.
    Thoren, P.N. Reflex Effects of Left Ventricular Mechanoreceptors with Afferent Fibers in the Vagal Nerves. In Cardiac Receptors, Hainsworth, R., Kidd, C., and Linden, R J. Cambridge: Cambridge University Press, 1976, pp. 259–277.Google Scholar
  126. 126.
    Thoren, P., Donald, D.E., and Shepherd, J.T. Role of heart and lung receptors with nonmedullated vagal afferents in circulatory control. Circ. Res. 38 (Suppl. II):II-2-II-9, 1976.PubMedGoogle Scholar
  127. 127.
    Bainbridge, F.A. The influence of venous filling upon the rate of the heart. J. Physiol. (London) 50: 65–84, 1915.PubMedGoogle Scholar
  128. 128.
    Bettcher, D.H., Zimpfer, M. and Vatner, S.F. Phylogenesis of the Bainbridge reflex. Am. J. Physiol. 242: R244 - R246, 1982.PubMedGoogle Scholar
  129. 129.
    Boettcher, D.H., Vatner, S.F., Heyndrickx, G.R., and Braunwald, E. Extent of utilization of the Frank-Starling mechanism in conscious dogs. Am. J. Physiol. 234: H338 - H345, 1978.PubMedGoogle Scholar
  130. 130.
    Zimpfer, M. and Vatner, S.F. Effects of acute increase in left ventricular preload on indices of myocardial function in conscious unrestrained and intact, tranquilized baboons. J. Clin. Invest. 67: 430–438, 1981.PubMedGoogle Scholar
  131. 131.
    Mancia, G. and Donald, D.E. Demonstration that the atria, ventricles, and lungs each are responsible for a tonic inhibition of the vasomotor center in the dog. Circ. Res. 36: 310–318, 1975.PubMedGoogle Scholar
  132. 132.
    Oberg, B. and Thoren, P. Circulatory responses to stimulation of medullated and nonmedullated afferents in the cardiac nerve in the cat. Acta. Physiol. Scand. 87: 121–132, 1973.PubMedGoogle Scholar
  133. 133.
    Graboys, T.B., Lille, R.D., Polansky, BJ., and Chobanian, A.V. Effects of lower body negative pressure on plasma catecholamine, plasma renin activity and the vectorcardiogram. Aerospace Med. 45: 834–839, 1974.PubMedGoogle Scholar
  134. 134.
    Johnson, J.M., Rowell, L.B., Neiderberger, M., and Eisman, M.M. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressures. Circ. Res. 34: 515–524, 1974.PubMedGoogle Scholar
  135. 135.
    Zoller, R.P., Mark, A.L., Abboud, F.M., Schmid, P.G., and Heistad, D.D. The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J. Clin. Invest. 51: 2967–2972, 1972.PubMedGoogle Scholar
  136. 136.
    Purtock, R.V., von Colditz, J.H., Seagard, J.L., Igler, F.O., Zuperku, EJ., and Kampine, J.P. Reflex effects of thoracic sympathetic afferent nerve stimulation on the kidney. Am. J. Physiol. 233: H580 - H586, 1977.PubMedGoogle Scholar
  137. 137.
    Bishop, V.S., Lombardi, F., Malliani, A., Pagani, M., and Recordati, G. Reflex sympathetic tachycardia during intravenous infusions in chronic spinal cats. Am. J. Physiol. 230: 25–29, 1976.PubMedGoogle Scholar
  138. 138.
    Hess, G.L., Zuperku, E J., Coon, R.L., and Kampine, J.P. Sympathetic afferent nerve activity of left ventricular origin. Am. J. Physiol. 227: 543–546, 1974.PubMedGoogle Scholar
  139. 139.
    Lombardi, F., Malliani, A., and Pagani, M. Nervous activity of afferent sympathetic fibres innervating the pulmonary veins. Brain. Res. 113: 197–200, 1976.PubMedGoogle Scholar
  140. 140.
    Malliani, A., Parks, M., Tuckett, R.P., and Brown, A.M. Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ. Res. 32: 9–14, 1973.PubMedGoogle Scholar
  141. 141.
    Salisbury, P.F., Galletti, P.M., Lewin, RJ., and Rieben, P.A. Stretch reflexes from the dog’s lung to the systemic circulation. Circ. Res. 7: 62–67, 1959.PubMedGoogle Scholar
  142. 142.
    Daly, M. deB., Hazzledine, J.L., and Ungar, A. The reflex effects of alterations in lung volume on systemic vascular resistance in the dog. J. Physiol. (London) 188: 331–351, 1967.Google Scholar
  143. 143.
    Daly, M. deB. and Robinson, B.H. An analysis of the reflex systemic vasodilator response elicited by lung inflation in the dog. J. Physiol. (London) 195: 387–406, 1968.PubMedGoogle Scholar
  144. 144.
    Glick, G., Wechsler, A.S., and Epstein, S.E. Reflex cardiovascular depression produced by stimulation of pulmonary stretch receptors in the dog. J. Clin. Invest. 48: 467–473, 1969.PubMedGoogle Scholar
  145. 145.
    Cassidy, S.S., Eschenbacher, W.L., and Johnson, R.L., Jr. Reflex cardiovascular depression during unilateral lung hyperinflation in the dog. J. Clin. Invest. 64: 620–626, 1979.PubMedGoogle Scholar
  146. 146.
    Cassidy, S.S., Eschenbacher, W.L., Robertson, C.H., Jr., Nixon, J.V., Blomqvist, G., and Johnson, R.L., Jr. Cardiovascular effects of positive-pressure ventilation in normal subjects. J. Appl. Physiol. 47: 453–461, 1979.PubMedGoogle Scholar
  147. 147.
    Vatner, S.F. and Rutherford, J.D. Control of the myocardial contractile state by carotid chemoand baroreceptor and pulmonary inflation reflexes in conscious dogs. J. Clin. Invest. 61: 1593–1601, 1978.PubMedGoogle Scholar
  148. 148.
    Okada, H. and Fox, I.J. Respiratory grouping of abdominal sympathetic activity in the dog. Am. J. Physiol. 213: 48–56, 1967.PubMedGoogle Scholar
  149. 149.
    Longhurst, J.C. and Mitchell, J.H. Reflex Control of the Circulation by Afferents from Skeletal Muscle. In Int. Rev. Physiol. Cardiovasc. Physiol. III, Vol. 18, Guyton, A.C. and Young, D.B. (eds.). Baltimore: University Park Press, 1979, pp. 125–148.Google Scholar
  150. 150.
    Mitchell, J.H., Kaufman, M.P. and Iwamoto, G.A. The exercise pressor reflex: Its cardiovascular effects, afferent mechanisms and central pathways. Ann. Rev. Physiol. 45: 229–242, 1983.Google Scholar
  151. 151.
    Burgess, P.R. and Clark, F.T. Characteristics of knee joint receptors in the cat. J. Physiol. (London) 203: 317–335, 1969.PubMedGoogle Scholar
  152. 152.
    Freeman, M.A.R. and Wyke, B. The innervation of the knee joint. An anatomical and histological study in the cat. J. Anat. 101: 505–534, 1967.PubMedGoogle Scholar
  153. 153.
    Gardner, E. The distribution and termination of nerves in the knee joint of the cat. J. Comp. Neurol. 80: 11–32, 1944.Google Scholar
  154. 154.
    Mitchell, J.H., Mierzwiak, D.S., Wildenthal, K., Willis, W.D., and Smith, A.M. Effect on left ventricular performance of stimulation of an afferent nerve from muscle. Circ. Res. 22: 507–516, 1968.PubMedGoogle Scholar
  155. 155.
    Kniffki, K.D., Mense, S., and Schmidt, R.F. Muscle receptors with fine afferent fibers which may evoke circulatory responses. Circ. Res. (Suppl. I ) 48: 25–31, 1981.Google Scholar
  156. 156.
    Fisher, M.L. and Nutter, D.O. Cardiovascular reflex adjustments to static muscular contractions in the canine hindlimb. Am. J. Physiol. 226: 648–655, 1974.PubMedGoogle Scholar
  157. 157.
    Mitchell, J.H., Reardon, W.C., and McCloskey, D.I. Reflex effects on circulation and respiration from contracting skeletal muscle. Am. J. Physiol. 233: H374 - H378, 1977.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Alan M. Fujii
  • Stephen F. Vatner
    • 1
  1. 1.New England Regional Primate Research CenterSouthboroUSA

Personalised recommendations