Proteolytic Enzymes and Arachidonic Acid Metabolites

  • Bonnie F. Sloane
  • Kenneth V. Honn
Part of the Prostaglandins, Leukotrienes, and Cancer book series (PLAC, volume 1)


Borgeat and Sirois (1) have summarized the relationship between arachidonic acid (20:4) metabolites and lysosomal enzyme release thusly: agents which increase cellular levels of cAMP inhibit lysosomal enzyme release, whereas agents which increase cGMP induce release. In 3T3L1 fibroblasts the most potent stimulator of increased cAMP is PGI2 followed by PGE1 (2). However, the relative potency of the prostaglandins for cAMP accumulation appears to be a function of the cell type. Thromboxane A2 prevents an increase in cellular cAMP due to an external stimulus (3). In contrast to the cyclooxygenase products (PGI2, PGE1, etc.), products of the lipoxygenase pathway have been shown to increase cellular cGMP (4).


Plasminogen Activator Cysteine Proteinase Human Foreskin Fibroblast Lipoxygenase Product Lysosomal Cathepsin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borgeat P, Sirois P: Leukotrienes: A major step in the under standing of intermediate hypersensitivity reactions. J. Med. Chem. 24:121–126, 1981.PubMedCrossRefGoogle Scholar
  2. 2.
    Hopkins NK, Gorman RR: Regulation of 3T3-L1 fibroblast differentiation by prostacyclin (prostaglandin I2). Biochim. Biophys. Acta. 663:457–466, 1981.PubMedGoogle Scholar
  3. 3.
    Marcus AJ: The role of lipids in platelet function: With particular reference to the arachidonic acid pathway. J. Lipid Res. 19:793–826, 1978.PubMedGoogle Scholar
  4. 4.
    Hidaka H, Asano T. Stimulation of human platelet guanylate cyclase by unsaturated fatty acid peroxides. Proc. Natl. Acad. Sci. USA 74:3657–3661, 1977.PubMedCrossRefGoogle Scholar
  5. 5.
    Northover BJ: Effect of indomethacin and related drugs on the calcium ion-dependent secretion of lysosomal and other enzymes by neutrophil polymorphonuclear leucocytes in vitro. Br. J. Pharmacol. 59:253–259, 1977.PubMedGoogle Scholar
  6. 6.
    Smith RJ: The guinea pig neutrophil calcium-dependent lysosomal enzyme secretory process. Inhibition by nonsteroid antiinflammatory agents. Biochem. Pharmacol. 28:2739–2746, 1979.PubMedCrossRefGoogle Scholar
  7. 7.
    Naccache PH, Showell HJ, Becker EL, Sha’afi RI: Arachidonic acid induced degranulation of rabbit peritoneal neutrophils. Biochem. Biophys. Res. Commun. 87:292–299, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Walenga RW, Showell HJ, Feinstein MB, Becker EL: Parallel inhibition of neutrophil arachidonic acid metabolism and lysosomal enzyme secretion by nordihydroguaiaretic acid. Life. Sei. 27:1047–1053, 1980.CrossRefGoogle Scholar
  9. 9.
    Smith RJ, Sun FF, Bowman BJ, Iden SS, Smith HW, McGuire JC: Effect of 6,9-diepoxy-6,9-(phenylimino)-Δ6,8-prostaglandin I1. (U-60–257) an inhibitor of leukotriene synthesis on human neutrophil function. Biochem. Biophys. Res. Commun. 109:943–949, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Bokoch GM, Reed PW: Effect of various lipoxygenase metabolites of arachidonic acid on degranulation of polymorphonuclear leukocytes. J. Biol. Chem. 256:5317–5320, 1981.PubMedGoogle Scholar
  11. 11.
    Hafstrom I, Pamblad J, Malsten CL, Radmark O, Samuelsson B: Leukotriene B4 — a stereospecific stimulator for release of lysosomal enzymes from neutrophils. FEBS Lett. 130:146–148, 1981.PubMedCrossRefGoogle Scholar
  12. 12.
    Showell HJ, Otterness IG, Marfat A, Corey EJ: Inhibition of leukotriene B4-induced neutrophil degranulation by leukotriene B4-dimethylamide. Biochem. Biophys. Res. Commun. 106:741–747, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    O’Flaherty JT, Thomas MJ, McCall CE, Wykle RL: Potentiating actions of hydroxyeicosatetraenoates on human neutrophil degranulation responses to leukotriene B4 and phorbol myristate acetate. Res. Commun. Chem. Pathol. Pharmacol. 40:475–487, 1983.PubMedGoogle Scholar
  14. 14.
    Quigley J, Cramer E, Fairbairn S, Gilbert R, Lacovara J, Ojakian G, Schwimmer R: Interaction of malignant cells with substrata: Adhesion, degranulation and migration. In: Honn KV, Crissman JD, Powers WE, Sloane BF (eds) Mechanisms of Metastasis: Potential Therapeutic Implications. Martinus Nijhoff, The Hague (In press).Google Scholar
  15. 15.
    Crutchley DJ, Conanan LB, Maynard JR: Induction of plasminogen activator and prostaglandin biosynthesis in HeLa cells by 12–0-tetradecanoylphorbol-13-acetate. Cancer Res. 40:849–852, 1980.PubMedGoogle Scholar
  16. 16.
    Crutchley DJ, Conanan LB, Maynard JR: Stimulation of fibrinolytic activity in human skin fibroblasts by prostaglandins E1, E2 and I2. J. Pharmacol. Exp. Therap. 222:544–549, 1982.Google Scholar
  17. 17.
    Conanan LB, Crutchley DJ: Serum-dependent induction of plasminogen activator in human fibroblasts by catecholamines and comparison with the effects of prostaglandin E1. Biochim. Biophys Acta 759:146–153, 1983.PubMedGoogle Scholar
  18. 18.
    Crutchley DJ, Maynard JR.: Arachidonic acid metabolism and induction of plasminogen activator in HeLa cells by tumor-promoting phorbol ester. In: Powles TJ, Bockman RS, Honn KV, Rainwell PW (eds) Prostaglandins and Cancer. Alan R. Liss Inc., New York, pp. 281–287, 1982.Google Scholar
  19. 19.
    Crutchley DJ, Maynard JR: Induction of plasminogen activator by 12–0-tetradecanoylphorbol-13-acetate and calcium ionophore. Suppression by inhibitors of fatty acid lipoxygenase. Biochim. Biophys. Acta 762:76–85, 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Sloane BF, Cavanaugh PG, Honn KV: Tumor cysteine proteinases, platelet aggregation and metastasis. In: Honn KV, Sloane BF (eds). Hemostatic Mechanisms and Metastasis. Martinus Nijhoff, The Hague, pp. 170–191, 1984.Google Scholar
  21. 21.
    Sloane BF, Honn KV: Cysteine proteinases and metastasis. Cancer Metastasis Rev. (In press).Google Scholar
  22. 22.
    Morrison RIG, Barrett AJ, Dingle JT: Cathepsin B1 and D action on human cartilage proteglycans. Biochim. Biophys Acta. 602:411–419, 1973.Google Scholar
  23. 23.
    Recklies AD, Poole AR: Proteolytic mechanisms of tissue destruction in tumor growth and metastasis. In: Weiss L, Gilbert HA (eds). Liver Metastasis. G.K. Hall, Boston, pp. 77–95, 1982.Google Scholar
  24. 24.
    Burleigh MC, Barrett AJ, Lazarus GS: Cathepsin B1. A lysosomal enzyme that degrades native collagen. Biochem. J. 137:387–398, 1974.PubMedGoogle Scholar
  25. 25.
    Etherington DS, Evans P J: The action of cathepsin B and collagenolytic cathepsin in the degradation of collagen. Acta Biol. Med. Germ. 36:1555–1563, 1977.PubMedGoogle Scholar
  26. 26.
    Sloane BF, Makim S, Dunn JR, Lacoste R, Theodorou M, Battista J, Alex R, Honn KV: Lipoxygenase products as mediators of tumor cell lysosomal enzyme release: Inhibition by nafazatrom. In: Powles TJ, Bockman RS, Honn KV, Ramwell PW (eds) Prostaglandins and Cancer. Alan R. Liss, New York, pp. 789–792, 1982.Google Scholar
  27. 27.
    Honn KV, Dunn JR: Nafazatrom (Bay g 6575) inhibition of tumor cell lipoxygenase activity and cellular proliferation. FEBS Lett. 139:65–68, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Busse WD, Mardin M, Grutzmann R, Dunn JR, Theodoreau M, Sloane BF, Honn KV: Nafazatrom (Bay g 6575): An inhibitor of cellular lipoxygenase. Fed. Proc. Fed. Am. Soc. Exp. Biol. 41:333, 1982.Google Scholar
  29. 29.
    Lokota K, Shono F, Yamamoto S, Kominami E, Katunuma N: Transformation of Leukotriene D4 catalyzed by lysosomal cathepsin H of rat liver. J. Biochem. (Tokyo) 94:1173–1178, 1983.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Bonnie F. Sloane
  • Kenneth V. Honn

There are no affiliations available

Personalised recommendations