Skip to main content

Part of the book series: Prostaglandins, Leukotrienes, and Cancer ((PLAC,volume 1))

Abstract

The enzymes which degrade phospholipids are ubiquitous in nature and have been described in almost every cell type examined. These phospholipases have a major role in the catabolism of dietary lipids for energy sources and also are important in the metabolism of membrane structural phospholipids. This latter function contributes to the control of each cell type’s unique phospholipid composition and undoubtedly has a major role in regulating cell function (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stubbs CD, Smith AD: The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta (779): 89–137, 1984.

    PubMed  CAS  Google Scholar 

  2. van den Bosch H: Intracellular phospholipases A. Biochim Biophys Acta (604): 191–246, 1980.

    Article  PubMed  Google Scholar 

  3. van den Bosch H: Phospholipases. In: Hawthorne JN, Ansell GB (ed) Phospholipids. Elsevier Biomedical Press, Amsterdam, 1982, pp 313–357.

    Google Scholar 

  4. O’Flaherty JT, Wykle RL: Biology and biochemistry of platelet-activating factor. Clin Rev Allergy (1): 353–367, 1983.

    PubMed  Google Scholar 

  5. Michell RH: Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta (415): 81–147, 1975.

    PubMed  CAS  Google Scholar 

  6. Rittenhouse-Simmons S: Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest (63): 580–587, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Bell RL, Kennerly DA, Stanford N, Majerus PW: Diglyceride lipase: a pathway for arachidonate release in platelets. Proc Natl Acad Sci USA (76): 3238–3241, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Waite M, Rao RH, Griffin H, Franson R, Miller C, Sisson P, Fry J: Phospholipases A1 from lysosomes and plasma membranes of rat liver. Methods Enzymol (71): 674–689, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Dennis EA: Phospholipases. In: Boyer P (ed) The enzymes, 3rd ed., Lipid enzymology. Academic Press, New York, 1983, pp 307–353.

    Google Scholar 

  10. Slotboom AJ, Verheij HM, de Haas GH: On the mechanism of phospholipase A2. In: Hawthorne JN, Ansell GB (ed) Phospholipids. Elsevier Biomedical Press, Amsterdam, 1982, pp 359–434.

    Google Scholar 

  11. Irvine RF: How is the level of free arachidonic acid controlled in mammalian cells? Biochem J (204): 3–16, 1982.

    PubMed  CAS  Google Scholar 

  12. Hawthorne JN: Inositol phospholipids. In: Hawthorne JN, Ansell GB (ed) Phospholipids. Elsevier Biomedical Press, Amsterdam, 1982, pp 263–278.

    Google Scholar 

  13. Verger R, Mieras MCE, de Haas GH: Action of phospholipase A at interfaces. J Biol Chem (248): 4023–4034, 1973.

    PubMed  CAS  Google Scholar 

  14. Robinson M, Waite M: Physical-chemical requirements for the catalysis of substrates by lysosomal phospholipase A. J Biol Chem (258): 14371–14378.

    Google Scholar 

  15. Bangham AD, Dawson RMC: Electrokinetic requirements for the reaction between Cl. perfringens α-toxin (phospholipase C) and phospholipid substrates. Biochim Biophys Acta (59): 103–115, 1962.

    Article  PubMed  CAS  Google Scholar 

  16. Cullis PR, de Kruijff B: Polymorphic phase behavior of lipid mixtures as detected by 31P NMR: evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine. Biochim Biophys Acta (507): 207–218, 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Elsbach P, Weiss J, Franson RC, Beckerdite-Quagliata S, Schneider A, Harris L: Separation and purification of a potent bactericidal/permeability increasing protein and a closely associated phospholipase A2 from rabbit polymorphonuclear leukocytes: observations on their relationship. J Biol Chem (254): 11000–11009, 1979.

    PubMed  CAS  Google Scholar 

  18. Jimento-Abendano J, Zahler P: Purified phospholipase A2 from sheep erythrocyte membrane: preferential hydrolysis according to polar groups and 2-acyl chains. Biochim Biophys Acta (573): 266–275, 1979.

    Google Scholar 

  19. Kannagi R, Koizuma K: Effects of different physical states of phospholipid substrates on partially purified platelet phospholipase A2 activity. Biochim Biophys Acta (556): 423–433, 1979.

    Article  PubMed  CAS  Google Scholar 

  20. Franson RC, Waite M, Wegliki W: Phospholipase A activity of lysosomes of rat myocardial tissue. Biochemistry (11): 472–476, 1972.

    Article  PubMed  CAS  Google Scholar 

  21. Rock CO, Snyder F: Rapid purification of phospholipase A2 from Crotalus adamanteus venom by affinity chromatography. J Biol Chem (250): 6564–6566.

    Google Scholar 

  22. Kramer RM, Wütrich C, Bollier C, Allegrini PR, Zahler P: Isolation of phospholipase A2 from sheep erythrocyte membranes in the presence of detergents. Biochim Biophys Acta (507): 381–394, 1978.

    Article  CAS  Google Scholar 

  23. Sloane-Stanley GH: Anaerobic reactions of phospholipids in brain suspensions. Biochem J (53): 613–619, 1953.

    PubMed  CAS  Google Scholar 

  24. Irvine RF, Dawson RMC: The distribution of calcium-dependent phosphatidylinositol-specific phosphodiesterase in rat brain. J Neurochem (31): 1427–1434, 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Billah MM, Lapetina EG, Cuatrecasas P: Phospholipase A2 and phospholipase C activities of platelets. J Biol Chem (255): 10227–10231, 1980.

    PubMed  CAS  Google Scholar 

  26. Graff G, Nahas N, Nikolopolou M, Natarajan V, Schmidt HHO: Possible regulation of phospholipase C activity in human platelets by phosphatidylinositol 4,5-bisphosphate. Arch Biochem Biophys (288): 299–308, 1984.

    Article  Google Scholar 

  27. Irvine RF, Letcher AJ, Dawson RMC: Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and Phosphomonoesterase activities of rat brain. Biochem J (218): 177–185, 1984.

    PubMed  CAS  Google Scholar 

  28. Takenawa T, Yoshitaka N: Effect of unsaturated fatty acids and Ca2+ on phosphatidylinositol turnover. J Biochem (91): 793–799, 1982.

    PubMed  CAS  Google Scholar 

  29. Dawson RMC, Hemington NL, Irvine RF: Diacylglycerol potentiates phospholipase attack upon phospholipid bilayers: Possible connection with cell stimulation. Biochem Biophys Res Commun (117): 196–201, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Tisdale MJ: Role of prostaglandins in metastatic dissemination of cancer. Exp Cell Biol (51): 250–256, 1983.

    CAS  Google Scholar 

  31. Honn KV, Bookman RS, Marnett LJ: Prostaglandins and cancer: a review of tumor initiation through tumor metastasis. Prostaglandins (21): 833–864, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Goodwin JS: Prostaglandins and host defense in cancer. Med Clin North Am (65): 829–844, 1981.

    PubMed  CAS  Google Scholar 

  33. Billah MM, Lapetina EG, Cuatrecasas P: Phospholipase A2 activity specific for phosphatidic acid: a possible mechanism for the production of arachidonic acid in platelets. J Biol Chem (256): 5399–5403, 1981.

    PubMed  CAS  Google Scholar 

  34. Bills TK, Smith JB, Silver MJ: Metabolism of [14C]-arachidonic acid by human platelets. Biochim Biophys Acta (424): 303–314, 1976.

    PubMed  CAS  Google Scholar 

  35. Brockman MJ, Ward JW, Marcus AJ: Phospholipid metabolism in stimulated human platelets: changes in phosphatidyl-inositol phosphatidic acid and lysophospholipids. J Clin Invest (66): 275–283, 1980.

    Article  Google Scholar 

  36. Ohuchi K, Levine L: Stimulation of prostaglandin synthesis by tumor promoting phorbol 12,13-diesters in canine kidney (MDCK) cells: cycloheximide inhibits the stimulated prostaglandin synthesis deacylation of lipids and morphological changes. J Biol Chem (253): 4783–4790, 1978.

    PubMed  CAS  Google Scholar 

  37. Levine L: Arachidonic acid transformation and tumor promotion. Adv Cancer Res (35): 49–79, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Daniel LW, King L, Waite M: Source of arachidonic acid for prostaglandin synthesis in Madin-Darby canine kidney cells. J Biol Chem (256): 12830–12835, 1981.

    PubMed  CAS  Google Scholar 

  39. Humes JL, Sadowski S, Galavage M, Goldenberg M, Subers E, Bonney RJ, Kuehl FA Jr: Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem (257): 1591–1594, 1982.

    PubMed  CAS  Google Scholar 

  40. Beaudry GA, Daniel LW, King L, Waite M: Stimulation of deacylation in Madin-Darby canine kidney cells 12-O-tetra-decanoyl-phorbol-13-acetate stimulates rapid phospholipid deacylation. Biochim Biophys Acta (750): 274–281, 1983.

    PubMed  CAS  Google Scholar 

  41. Schremmer JM, Blank ML, Wykle RL: Bradykinin-stimulated release of [3H]arachidonic acid from phospholipids of HSDM1C1 cells: comparison of diacylphospholipids and plasmalogens as sources of prostaglandin precursors. Prostaglandins (18): 491–505, 1979.

    Article  PubMed  CAS  Google Scholar 

  42. Swendsen CL, Ellis JM, Chilton FH III, O’Flaherty JT, Wykle RL: 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine: a novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore A23187. Biochem Biophys Res Commun (113): 72–79, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Ohuchi K, Levine L: Tumor promoting phorbol diesters stimulate release of radioactivity from [3H]arachidonic acid labeled — but not [14C]linoleic acid labeled — cells. Indomethacin inhibits the stimulated release from [3H]arachidonate labeled cells. Prostaglandins Med (1): 421–431, 1978.

    Article  PubMed  CAS  Google Scholar 

  44. Beaudry GA, King L, Daniel LW, Waite M: Stimulation of deacylation in Madin-Darby canine kidney cells: specificity of deacylation and prostaglandin production in 12-O-tetra-decanoyl-phorbol-13-acetate treated cells. J Biol Chem (257): 10973–10977, 1982.

    PubMed  CAS  Google Scholar 

  45. Daniel LW, Beaudry GA, King L, Waite M: Regulation of arachidonic acid metabolism in Madin-Darby canine kidney cells: comparison of A23187 and 12-O-tetradecanoyl-phorbol-13-acetate. Biochim Biophys Acta (792): 33–38, 1984.

    PubMed  CAS  Google Scholar 

  46. Rittenhouse-Simmons S: Differential activation of platelet phospholipases by thrombin and ionophore A23187. J Biol Chem (256): 4153–4155, 1981.

    PubMed  CAS  Google Scholar 

  47. Hokin MR, Hokin LE: The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J Biol Chem (234): 1381–1386, 1959.

    PubMed  CAS  Google Scholar 

  48. Joseph SK, Thomas AP, Williams RJ, Irvine RF, Williamson JR: myo-Inositol 1,4,5-trisphosphate: a second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J Biol Chem (259): 3077–3081, 1984.

    PubMed  CAS  Google Scholar 

  49. Kishimoto A, Takai Y, Mori T, Kikkawa U, Nishizuka Y: Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relationship to phosphatidylinositol turnover. J Biol Chem (255): 2273–2276, 1980.

    PubMed  CAS  Google Scholar 

  50. Kuo JF, Andersson RGG, Wise BC, Mackerlova L, Salomonsson I, Brackett NL, Katoh N, Shoji M, Wrenn RW: Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin and trifluoperazine. Proc Natl Acad Sci USA (77): 7039–7043.

    Google Scholar 

  51. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa Y, Nishizuka Y: Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem (257): 7847–7851, 1982.

    CAS  Google Scholar 

  52. Niedel JE, Kuhn LJ, Vandenbark GR: Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA (80): 36–40, 1983.

    Article  PubMed  CAS  Google Scholar 

  53. Ashendel CL, Staller JM, Boutwell RK: Protein kinase activity associated with a phorbol ester receptor purified from mouse brain. Cancer Res (43): 4333–4337.

    Google Scholar 

  54. Siess W, Siegel FL, Lapetina EG: Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets: degree of phospho-lipase C activation correlates with protein phosphorylation, platelet shape change, serotonin release and aggregation. J Biol Chem (258): 11236–11242, 1983.

    PubMed  CAS  Google Scholar 

  55. Rozengurt E, Rodriguez-Pena M, Smith KA: Phorbol esters, phospholipase C and growth factors rapidly stimulate the phosphorylation of a Mr 80,000 protein in intact quiescent 3T3 cells. Proc Natl Acad Sci USA (80): 7244–7248, 1983.

    Article  PubMed  CAS  Google Scholar 

  56. Sugimoto Y, Whitman M, Cantley LC, Erickson RL: Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Natl Acad Sci USA (81): 2117–2121, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Daniel, L.W. (1985). Phospholipases. In: Lands, W.E.M. (eds) Biochemistry of Arachidonic Acid Metabolism. Prostaglandins, Leukotrienes, and Cancer, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2597-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2597-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9627-0

  • Online ISBN: 978-1-4613-2597-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics