Skip to main content

Modulation of Coronary Arterial Prostacyclin Synthetase Activity

  • Chapter
Pathogenesis of Stress-Induced Heart Disease

Abstract

Prostacyclin (PGI2), a major product of prostaglandin endoperoxide (PGH2) metabolism in blood vessels, has potent vasodilator and platelet antiaggregatory activity (1). Therefore, modulation of PGI2 synthetase activity is of prime physiological importance in the regulation of blood vessel function. Reducing agents, such as GSH, have been reported to augment prostaglandin production by protecting the cyclooxygenase enzyme system (arachidonic acid → PGH2) from self-catalyzed deactivation (2). However, little evidence exists for the effects of these agents upon augmenting prostacyclin synthetase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vane JR: Adventures and excursions in bioassay: the stepping stones to prostacyclin. Br. J. Pharmacol. (79):821–838, 1983.

    PubMed  CAS  Google Scholar 

  2. Egan RW, Paxton J, Kuehl FA, Jr: Mechanism for irreversible self-deactivation of prostaglandin synthetase. J. Biol. Chem. (251):7329–7335, 1976.

    PubMed  CAS  Google Scholar 

  3. Lowry OH, Rosebrough NJ, Farr AL, Randall RS: Protein measurement with folin phenol reagent. J. Biol. Chem. (193):265–275, 1951.

    PubMed  CAS  Google Scholar 

  4. Kerstein MD, Saroyan M, McMullen-Laird M, Hyman AL, Kadowitz PJ, McNamara DB: Metabolism of prostaglandins in human saphenous vein. J. Surg. Res. (35):91–100, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. She HS, McNamara DB, Spannhake EW, Hyman AL, Kadowitz PJ: Metabolism of prostaglandin endoperoxide by microsomes from cat lung. Prostaglandins (21):531–541, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. McNamara DB, Roulet MJ, Hyman AL, Kadowitz PJ: Characterization of a calcium-accumulating mitochondrial fraction isolated from bovine intrapulmonary vein. Can. J. Physiol. Pharmacol. (57): 1107–1113, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. McNamara DB, Roulet MJ, Gruetter CA, Hyman AL, Kadowitz PJ: Correlation of prostaglandin-induced mitochondrial calcium release with contraction in bovine intrapulmonary vein. Prostaglandins (20):311–320, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Gerritsen ME, Printz MP: Sites of prostaglandin synthesis in the bovine heart and isolated bovine coronary microvessels. Circ. Res. (49):1152–1163, 1981.

    PubMed  CAS  Google Scholar 

  9. Meister A, Anderson ME: Glutathione. Ann. Rev. Biochem. (52): 711–760, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Farooqui MYH, Ahmed A: Circadian periodicity of tissue glutathione and its relationship with lipid peroxidation in rats. Life Sci. (34):2413–2418, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas G, Skrinska V, Lucas F, Butkus A: Platelet glutathione and thromboxane synthesis in diabetes mellitus. Fed. Proc. (43): 1040, 1984.

    Google Scholar 

  12. Romson JL, Hook BG, Rigot VH, Schork MA, Swanson DP, Lucchesi BR: The effect of ibuprofen on accumulation of Indium-111-labeled platelets and leukocytes in experimental myocardial infarction. Circulation (66): 1002–1011, 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Fantone JC, Kinnes DA: Prostaglandin E1 and prostaglandin I2 modulation of superoxide production by human neutrophils. Biochem. Biophys. Res. Commun. (113):506–512, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Lefer AM, Ogletree MS, Smith JB, Silver MJ, Nicolaou KC, Gasic GP: Prostacyclin: a potentially valuable agent for preserving myocardial tissue in acute myocardial infarction. Science (200): 52–54, 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Okuma M, Takayma H, Uchino H: Generation of prostacyclin-!ike substance and lipid peroxidation in vitamin E-deficient rats. Prostaglandins (19):527–536, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Needleman P: Organic nitrate metabolism. Ann. Rev. Pharmacol. (16):81–93, 1976.

    Article  CAS  Google Scholar 

  17. Schror K, Grodzinska L, Darius H: Stimulation of coronary vascular prostacyclin and inhibition of human platelet thromboxane A2 after low dose nitroglycerin. Thromb. Res. (23):59–67, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Beetens JR, Claeys M, Herman AG: Vitamin C increases the formation of prostacyclin by aortic rings from various species and neutralizes the inhibitory effect of the 15-hydroxy-arachidonic acid. Br. J. Pharmacol. (80):249–254, 1983.

    PubMed  CAS  Google Scholar 

  19. McMullen-Laird M, McNamara DB, Kerstein MD, Hyman AL, Kadowitz PJ: Human lung metabolism of prostaglandin endoperoxide. Circulation (66II):166, 1982.

    Google Scholar 

  20. McNamara DB, Hussey JL, Kerstein MD, Rosenson RJ, Hyman AL, Kadowitz PJ: Modulation of prostacyclin synthetase and unmasking of PGE2 isomerase in bovine coronary arterial microsomes. Biochem. Biophys. Res. Commun. (118):33–39, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Hyman AL, Kadowitz PJ, Lands WEM, Crawford CG, Fried J, Barton J: Coronary vasodilator activity of 13,14-dehydroprosta-cyclin methyl ester: comparison with prostacyclin and other prostanoids. Proc. Natl. Acad. Sci. USA (75):3522–3526, 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Bunting S, Moncada S, Vane JR: The prostacyclin-thromboxane A2 balance: pathophysiological and therapeutic implications. Br. Med. Bull. (39):271–276, 1983.

    PubMed  CAS  Google Scholar 

  23. Carrier R, Cragoe EJ, Ethier D, Ford-Hutchinson AW, Girard Y, Hall RA, Hamel P, Rokach J, Share NN, Stone CA, Yusko P: Studies on L-640,035: a novel antagonist of contractile prostanoids in the lung. Br. J. Pharmacol. (82):389–395, 1984.

    PubMed  CAS  Google Scholar 

  24. Greenberg S: Effect of prostacyclin and 9α,11α-epoxymethano-prostaglandin H2 on calcium and magnesium fluxes and tension development in canine intralobar pulmonary arteries and veins. J. Pharmacol. Exp. Ther. (219):326–337, 1981.

    PubMed  CAS  Google Scholar 

  25. Carsten ME, Miller JD: Effects of prostaglandins and oxytocin on calcium release from a uterine microsomal fraction. J. Biol. Chem. (252):1576–1581, 1977.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

McNamara, D.B. et al. (1985). Modulation of Coronary Arterial Prostacyclin Synthetase Activity. In: Beamish, R.E., Panagia, V., Dhalla, N.S. (eds) Pathogenesis of Stress-Induced Heart Disease. Developments in Cardiovascular Medicine, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2589-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2589-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9623-2

  • Online ISBN: 978-1-4613-2589-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics