Skip to main content

The Effect of Some Calcium-Channel Blocking Drugs on the Endogenous Catecholamine Content of Various Organs of the Rat

  • Chapter
Pathogenesis of Stress-Induced Heart Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 46))

Abstract

The calcium-channel blocking drugs have diverse chemical structures and, although the site and mechanism of their action has not been defined, they have been suggested to block voltage-dependent calcium channels by inhibiting transmembrane calcium influx through the cell membrane (1). The discovery of these drugs is a major development in cardiovascular pharmacology because their well-established ability to block excitation-contraction coupling in cardiac and vascular smooth muscle makes them useful in treating a wide variety of cardiovascular disorders. They also block excitation-secretion coupling and several other secretory processes that require calcium influx; however, they do so only at concentrations higher than those needed for blocking excitation-contraction coupling (2–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann Rev Pharmacol Toxicol (17): 149–166, 1977.

    Article  CAS  Google Scholar 

  2. Haeusler G: Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J Pharmacol Exp Ther (180): 672–682, 1972.

    PubMed  CAS  Google Scholar 

  3. Dreifuss JJ, Grau JD, Nordmann JJ: Effects on the isolated neurohypophysis of agents which affect the membrane permeability to calcium. J Physiol (London) (231): 96P–98P, 1973.

    PubMed  CAS  Google Scholar 

  4. Russell JT, Thorn NA: Calcium and stimulus-secretion coupling in the neurohypophysis. II. Effects of lanthanum, a verapamil analogue (D-600) and prenylamine on 45-calcium transport and vasopressin release in isolated rat neurohypophysis. Acta Endocrinol (Copenhagen) (76): 471–487, 1974.

    PubMed  CAS  Google Scholar 

  5. Malaisse WJ, Devis G, Pipeleers DG, Somers G: Calcium-antagonists and islet function. IV. Effect of D600. Diabetologia (12): 77–81, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Pinto JEB, Trifaro JM: The different effects of D-600 (methoxyverapamil) on the release of adrenal catecholamines induced by acetylcholine, high potassium or sodium deprivation. Br J Pharmacol (57): 127–132, 1976.

    PubMed  CAS  Google Scholar 

  7. Chaudhry A, Vohra MM: A reserpine-like action of verapamil on cardiac sympathetic nerves. Eur J Pharmacol (97): 156–158, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Chaudhry A, Vohra MM: Depletion of cardiac noradrenaline stores by the calcium-channel blocker D-600. Can J Physiol Pharmacol In press, 1984.

    Google Scholar 

  9. Schöne H-H, Lindher E: Die Wirkungen des N-[3′-Phenyl-propyl-(2′)]-1, 1-diphenyl-propyl-(3)-amins auf den Stoffwechsel von Serotonin und Noradrenalin. Arzneimittel-Forsch (10): 583–585, 1960.

    Google Scholar 

  10. Schöne H-H, Lindner E: Über die Wirkung von N-(3′Pheny-propyl-(2′)-1, 1-diphenyl-propyl-(3)-amin auf den Katecholamin-Stoffwechsel. Klin Wochensch (40): 1196–1200, 1962.

    Article  Google Scholar 

  11. Carlsson A, Hillarp NA, Waldeck B: Analysis of the Mg++-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Acta Physiol Scand (59): [Suppl 215] 5–38, 1963.

    Google Scholar 

  12. McAllister RG, Howell SM: Fluorometric assay of verapamil in biological fluids and tissues. J Pharm Sci (65): 431–432, 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Lüllmann H, Timmermans PBMWM, Ziegler A: Accumulation of drugs by resting or beating cardiac tissue. Eur J Pharmacol (60): 277–285, 1979.

    Article  PubMed  Google Scholar 

  14. Keefe DL, Kates RE: Myocardial disposition and cardiac pharmacodynamics of verapamil in the dog. J Pharmacol Exp Ther (220): 91–96, 1982.

    PubMed  CAS  Google Scholar 

  15. Pang DC, Sperelakis N: Nifedipine, diltiazem, bepridil and verapamil uptakes into cardiac and smooth muscles. Eur J Pharmacol (87): 199–207, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Palm D, Grobecker H, Bak IJ: Membrane effects of catecholamine releasing drugs. In: Schumann HJ, Kroneberg G (eds) New aspects of storage and release mechanisms of catecholamines. (Bayer symposium II), Springer-Verlag, Berlin, 1970, pp 188–198.

    Google Scholar 

  17. Giachetti A, Shore PA: The reserpine receptor. Life Sci (23): 89–92, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Udenfriend S, Cooper JR., Clark CT, Baer JE: Rate of turnover of epinephrine in the adrenal medulla. Science (117): 663–665, 1953.

    Article  PubMed  CAS  Google Scholar 

  19. Mras S, Sperelakis N: Comparison of [3H]bepridil and [3H]verapamil uptake into rabbit aortic rings. J Cardiovas Pharmacol (4): 777–783, 1982.

    Article  CAS  Google Scholar 

  20. Klevans LR, Gebber GL: Comparison of differential secretion of adrenal catecholamines by splanchnic nerve stimulation and cholinergic agents. J Pharmacol Exp Ther (172): 69–76, 1970.

    PubMed  CAS  Google Scholar 

  21. Axelrod J, Hertling G, Patrick RW: Inhibition of H3-norepinephrine release by monoamine oxidase inhibitors. J Pharmacol Exp Ther (134): 325–328, 1961.

    PubMed  CAS  Google Scholar 

  22. Kopin IJ: Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings. Pharmacol Rev (18): 513–523, 1966.

    PubMed  CAS  Google Scholar 

  23. Antonaccio MJ, Smith CB: Effects of chronic pretreatment with pargyline upon responses of the atrial pacemaker and of left atrial strips of guinea pigs to tyramine, mephentermine, d-amphetamine and adrenergic nerve stimulation. J Pharmacol Exp Ther (170): 97–107, 1969.

    PubMed  CAS  Google Scholar 

  24. Jonason J: Prevention of the reserpine effect on rat salivary gland noradrenaline by inhibitors of monoamine oxidase and catechol-o-methyl transferase. J Pharm Pharmacol (22): 93–95, 1970.

    Article  PubMed  CAS  Google Scholar 

  25. Langley AE, Weiner N: The effect of pargyline pretreatment on the enhancement of the exocytotic release of norepinephrine during nerve stimulation which is induced by a benzoquinolizine compound with reserpine-like properties. J Pharmacol Exp Ther (213): 534–538, 1980.

    PubMed  CAS  Google Scholar 

  26. Fairhurst AS, Whittaker ML, Ehlert FJ: Interactions of D600 (methoxyverapamil) and local anesthetics with rat brain α-adrenergic and muscarinic receptors. Biochem Pharmacol (29): 155–162, 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Glossmann H, Hornung R: Calcium- and potassium-channel blockers interact with α-adrenoceptors. Mol Cell Endocrinol (19): 243–251, 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Motulsky HJ, Snavely MD, Hughes RJ, Insel PA: Interaction of verapamil and other calcium channel blockers with α1- and α2-adrenergic receptors. Cir Res (52): 226–231, 1983.

    Google Scholar 

  29. Blackmore PF, El-Refai MF, Exton JH: α-Adrenergic blockade and inhibition of A23187 mediated Ca2+ uptake by the calcium antagonist verapamil in rat liver cells. Mol Pharmacol (15): 598–606, 1979.

    PubMed  CAS  Google Scholar 

  30. Galzin A-M, Langer SZ: Presynaptic α2-adrenoceptor antagonism by verapamil but not by diltiazem in rabbit hypothalamic slices. Br J Pharmac (78): 571–577, 1983.

    CAS  Google Scholar 

  31. Bartholini G, Keller HH, Pletscher A: Effect of neuroleptics on endogenous norepinephrine in rat brain. Neuropharmacology (12): 751–756, 1973.

    Article  PubMed  CAS  Google Scholar 

  32. Wakade AR, Wakade TD: Reduction in norepinephrine content of sympathetic neuroeffector organs by alpha adrenergic antagonists and nerve stimulation: Evidence for presynaptic control of sympathetic transmitter release in intact animal. J Pharmacol Exp Ther (228): 287–292, 1984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Chaudhry, A., Vohra, M.M. (1985). The Effect of Some Calcium-Channel Blocking Drugs on the Endogenous Catecholamine Content of Various Organs of the Rat. In: Beamish, R.E., Panagia, V., Dhalla, N.S. (eds) Pathogenesis of Stress-Induced Heart Disease. Developments in Cardiovascular Medicine, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2589-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2589-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9623-2

  • Online ISBN: 978-1-4613-2589-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics