Advertisement

Hemorheological Factors and Treatment in Myocardial Ischemia

  • George P. Biro
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 45)

Abstract

Elsewhere in this Symposium, Dr. J. Schaper has shown that the ultimate extent of a myocardial infarct, following an acute coronary occlusion, is the result of the progressive outward expansion of the zone damaged by the ischemic process and that the time-course and full extent of this process varies with the species. The objective of this contribution is to review the evidence favouring hemorheological causes accounting for some of the temporal expansion of the ischemic process and the potential modification of the process by rheological means. Before this is undertaken, however, some relevant hemorheological principles must be reviewed.

Keywords

Shear Rate Acute Myocardial Infarction Blood Viscosity Coronary Occlusion Plasma Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fung YC: Biomechanics. Springer-Verlag, New York, 1981, pp. 62–172.Google Scholar
  2. 2.
    Meiselman HJ: Morphological determinants of red cell deformability. Scand. J. clin. Lab. Invest. 41(Suppl. 156):27–34, 1981.CrossRefGoogle Scholar
  3. 3.
    Schmid-Schoenbein H, Gaehtgens P: What is red cell deformability? Scand. J. clin. Lab. Invest. 41(Suppl. 156):13–26, 1981.CrossRefGoogle Scholar
  4. 4.
    Chien S: Determinants of blood viscosity and red cell deformability. Scand. J. clin. Lab. Invest. 41(Suppl. 156):7–12, 1981.CrossRefGoogle Scholar
  5. 5.
    Schmid-Schonbein H: Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation. In: Guyton AC & Cowley AW Jr (eds) International Review of Physiology, vol. 9, Cardiovascular Physiology II. University Park Press, Baltimore, 1976, pp. 1–62.Google Scholar
  6. 6.
    Schmid-Schonbein H: Macrorheology and microrheology of blood in cerebrovascular insufficiency. Eur. Neurol. 22 (Suppl. l):2–22, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmid-Schönbein H, Wells R: Red cell aggregation and red cell deformation: their influence on blood rheology in health and disease. In: Hartert HH & Copley AF (eds): Theoretical and clinical hemorheology. Springer Verlag, New York, 1970, pp. 348–360.Google Scholar
  8. 8.
    Dintenfass L, Forbes CD: Effect of fibrinogen on aggregation of red cells and on apparent viscosity of artificial thrombi in hemophilia, myocardial infarction, thyroid disease, cancer and control systems. Microvasc. Res. 9:107–121, 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    Dintenfass L: Viscosity and clotting of blood in venous thrombosis and coronary occlusions. Circ. Res. 14:1–16, 1964.PubMedGoogle Scholar
  10. 10.
    Dintenfass L, Julian DG, Miller G: Viscosity of blood in normal subjects and patients suffering from coronary occlusion and arterial thrombosis. Amer. Heart J. 71:587–600, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Langsjoen PH, Inmon TW: Hemorheologic observations in acute myocardial infarction. Angiology 19:247–256, 1968.PubMedCrossRefGoogle Scholar
  12. 12.
    Ditzel J, Bang HO, Thorsen N: Myocardial infarction and whole blood viscosity. Acta med. Scand. 283:577–579, 1968.Google Scholar
  13. 13.
    Chmiel H: New experimental results in hemorheology. Biorheology 11:87–96, 1974.Google Scholar
  14. 14.
    Jan KM, Chien S, Bigger JT Jr: Observations on blood viscosity changes after acute myocardial infarction. Circulation 51:1079–1084, 1975.PubMedGoogle Scholar
  15. 15.
    Sack R, Anadere I, Heimburg P, Chmiel H: Hemorheological changes after acute myocardial infarction. Biorheology 20:413, 1983.Google Scholar
  16. 16.
    Meyers L: Blood fibrinogen in myocardial infarction. Arch, internal Med. 82:419–421, 1948.Google Scholar
  17. 17.
    Losner S, Volk BW, Wilensky ND: Fibrinogen concentration in acute myocardial infarction. Arch. Internal Med. 93:231–245, 1954.Google Scholar
  18. 18.
    Easthan RD, Morgan EH: Plasma-fibrinogen levels in coronary-artery disease. Acta med. Scand. 183:577–579, 1968.Google Scholar
  19. 19.
    Ogston CM, Ogston D: Plasma fibrinogen and plasminogen levels in health and in ischemic heart disease. J. clin. Path. 19:352–356, 1966.PubMedCrossRefGoogle Scholar
  20. 20.
    Fulton RM, Duckett K: Plasma-fibrinogen and thromboemboli after myocardial infarction. Lancet II:1161–1164, 1976.CrossRefGoogle Scholar
  21. 21.
    Sharma SC, Seth HN: Platelet adhesiveness, plasma fibrinogen and fibrinolytic activity in acute myocardial infarction. Brit. Heart J. 40:526–529, 1975.CrossRefGoogle Scholar
  22. 22.
    Cristal N, Slonim A, Bar-Han I, Hart A: Plasma fibrinogen levels and the clinical course of acute myocardial infarction. Angiology 34: 693–608, 1983.PubMedCrossRefGoogle Scholar
  23. 23.
    Schmid-Schoenbein H, Rieger H, Gallasch G, Schachtner H: Pathological red cell aggregation (clump aggregation). Bibl. Anat. 16:484–492, 1977.Google Scholar
  24. 24.
    Merrill EW, Cheng CS, Pelletier GA: Yield stress of normal human blood as a function of endogenous fibrinogen. J. appl. Physiol. 26:1–3, 1968.CrossRefGoogle Scholar
  25. 25.
    Gordon RJ, Snyder GK, Tritel H, Taylor WJ: Potential significance of plasma viscosity and hematocrit variations in myocardial ischemia. Amer. Heart J. 87:175–182, 1974.PubMedCrossRefGoogle Scholar
  26. 26.
    Dodds AJ, Boyd MJ, Allen J, Bennett ED, Flute PT, Dormandy JA: Changes in red cell deformability and other hemorheological variables after myocardial infarction. Br. Heart J. 44:508–511, 1980.PubMedCrossRefGoogle Scholar
  27. 27.
    Dormandy J, Boyd M, Ernst E: Red cell filterability after myocardial infarction. Scand. J. clin. Lab. Invest. 41 Suppl 156):195–198, 1981.CrossRefGoogle Scholar
  28. 28.
    Langsjoen PH: The value of reducing blood viscosity in acute myocardial infarction. In: 7th Europ. Conf. Microcirculation, Aberdeen, 1972, Bibl. Anat. 11:180–184, 1973.PubMedGoogle Scholar
  29. 29.
    Reimer KA, Lowe JE, Rasmussen MM, Jennings RB: The wavefront phenomenon of ischemic cell death: I. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794, 1977.PubMedGoogle Scholar
  30. 30.
    Gaehtgens P, Brunner R, Pries AR, Kanzow G: Physiological dilution of blood in the microvasculature. In: Hemodilution and Flow improvement. Bibliotheca haemat. 47:5–13. Schmid-Schoenbein H, Messmer K, Rieger H (Eds.). Karger, Basel, 1981.Google Scholar
  31. 31.
    Murphy JR: The influence of pH and temperature on some physical properties of normal erythrocytes and erythrocytes from patients with hereditary spherocytosis. J. lab. Clin. Med. 69:758–771, 1977.Google Scholar
  32. 32.
    Dintenfass L, Burnard ED: Effect of hydrogen ion concentration on in vitro viscosity of packed red cells and blood at high haematocrit. Med. J. Austr. 1:1072–1079, 1966.Google Scholar
  33. 33.
    Biro GP, Beresford-Kroeger D, Hendry P: Early deleterious changes following acute experimental coronary occlusion and salutary antihyper-viscosity effect of hemodilution with stroma-free hemoglobin. Amer. Heart J. 103:870–878, 1982.PubMedCrossRefGoogle Scholar
  34. 34.
    Biro GP, Beresford-Kroeger D: The effect of hemodilution with stroma-free hemoglobin and dextran on collateral perfusion of ischemic myocardium in the dog. Amer. Heart J. 99:64–75, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Astrup T, Brakman P, Nissen U: The estimation of fibrinogen: a revision. Scand. J. clin. lab. Invest. 17:57–72, 1965.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmid-Schoenbein H, Rieger H: Why hemodilution in low flow states? In: Hemodilution and Flow Improvement, Bibliotheca haemat. 47:99–121. Schmid-Schoenbein H, Messmer K, Rieger H (Eds.). Karger, Basel, 1981.Google Scholar
  37. 37.
    Cox JL, Pass HI, Anderson RW, Wechsler AS, Oldham HN Jr, Sabiston DC: Augmentation of coronary collateral flow in acute myocardial infarction. Surg. Forum 216:238–240, 1975.Google Scholar
  38. 38.
    Johansson B, Linder E, Seeman T: Effects of hematocrit and blood viscosity on myocardial blood flow during temporary coronary occlusions in dogs. Scand. J. Thorac. cardiovasc. Surg. 1:165–174, 1967.PubMedGoogle Scholar
  39. 39.
    Yoshikawa H, Powell WJ Jr, Bland JHL, Lowenstein E: Effect of acute anemia on experimental myocardial ischemia. Amer. J. Cardiol. 32: 670–678, 1973.PubMedCrossRefGoogle Scholar
  40. 40.
    Hofmann M, Hofmann M, Schaper W: Infarct size manipulation by alteration of hematocrit. Amer. J. Cardiol. 45:484, 1980.CrossRefGoogle Scholar
  41. 41.
    Cohn LH, Lamberti JJ Jr, Florian A, Moses R, Vandevanter S, Kirk E, Collins JJ Jr: Effect of hemodilution on acute myocardial ischemia. J. surg. Res. 18:523–529, 1975.PubMedCrossRefGoogle Scholar
  42. 42.
    Briden KL, Teltser M, Weiss HR: The effect of mild normovolemic hemodilution on regional flow, oxygenation and small vessel blood content in the rabbit heart subjected to acute coronary occlusion. Circ. Shock 6:223–233, 1979.PubMedGoogle Scholar
  43. 43.
    Nahas RA, Mundth ED, Tanae H, Buckley MJ, Austen WG: Effect of hemodilution on left ventricular function with regional ischemia of the heart. Surg. Forum 23:149–151, 1972.PubMedGoogle Scholar
  44. 44.
    Tucker WY, Bean J, Vandevanter S, Cohn LH: The effect of hemodilution on experimental myocardial infarct size. Eur. surg. Res. 12:1–11, 1980.PubMedCrossRefGoogle Scholar
  45. 45.
    Biro GP: Current status of erythrocyte substitutes. Canad. Med. Ass. J. 129:237–244, 1983.PubMedGoogle Scholar
  46. 46.
    Biro GP: Effect of hemodilution with dextran, stroma-free hemoglobin solution and Fluosol-DA on experimental myocardial ischemia in the dog. In: Hemodilution and Flow Improvement, Schmid-Schoenbein H, Messmer K, Rieger H (Eds). Bibliotheca haematol 47:54–69. Karger Basel, 1981.Google Scholar
  47. 47.
    Biro GP: Fluorocarbon and dextran hemodilution in myocardial ischemia. Canad. J. Surg. 26:163–168, 1983.PubMedGoogle Scholar
  48. 48.
    Feola M, Azar D, Wiener L: Improved oxygenation of ischemic myocardium by hemodilution with stroma-free hemoglobin solution. Chest 75:369–375, 1979.PubMedCrossRefGoogle Scholar
  49. 49.
    Ghogar DH, Kloner RA, Muller J, DeBoer LW, Braunwald E, Clark LC Jr: Fluorocarbons reduce ischemic damage after coronary occlusion. Science 211:1439–1441, 1981.CrossRefGoogle Scholar
  50. 50.
    Nunn GR, Dance G, Peters J, Cohn LH: Effect of fluorocarbon exchange transfusion on myocardial infarction size in dogs. Amer. J. Cardiol. 52:203–205, 1983.PubMedCrossRefGoogle Scholar
  51. 51.
    Rude RE, Glogar D, Khuri SF, Kloner RA, Karaffa S, Muller JE, Clark LC Jr, Braunwald E: Effects of intravenous fluorocarbons during and without oxygen enhancement on acute myocardial ischemic injury assessed by measurement of intramyocardial gas tensions. Amer. Heart J. 103:986–995, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Biro GP: The effect of propranolol on blood viscosity-changes induced by experimental coronary occlusion. Canad. J. Physiol. Pharmacol. in press.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • George P. Biro

There are no affiliations available

Personalised recommendations