Skip to main content

The Genesis and Control of Reperfusion Arrhythmias

  • Chapter
Stress and Heart Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 45))

  • 65 Accesses

Abstract

The objective of this article is to summarize the current state of knowledge concerning the mechanisms of origin and pharmacological control of reperfusion-induced arrhythmias. For more detailed discussion readers are referred to two recent reviews (1,2). Interest in this subject has been stimulated greatedly by the realization that reperfusion is a clinically relevant condition and that it may precipitate potentially lethal arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manning AS, Hearse DJ. Reperfusion-induced arrhythmias: mechanisms and prevention. J. Mol Cell. Cardiol. 16: 497–517 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Corn PB, Witkowski FX. Potential electrophysiologic mechanisms responsible for dysrhythmias associated with reperfusion of ischaemic myocardium. Circulation (1983), 68: Suppl 1, 16–24.

    Google Scholar 

  3. Tzivoni D, Keren A, Granot H, Gottlieb S, Benhorin J, Stern S. Ventricular fibrillation caused by myocardial reperfusion in Prinzmetal’s angina. Am Heart J (1983) 105: 323–325.

    Article  PubMed  Google Scholar 

  4. Been A., DeBono D.P., Bonlton F.D. Acute coronary thrombolysis with a single intra coronary injection of BRL2692. Brit Heart J. In press 1984.

    Google Scholar 

  5. Downar E, Janse MJ, Durrer D. The effect of acute coronary occLusion on subepicardial transmembrane potentials in the intact porcine heart. Circlation (1977), 56: 217–224.

    CAS  Google Scholar 

  6. Russell DC, Wojtezak J, Oliver MF. Combined electrophysiological technique for assessment of the cellular bases of early ventricular arrhythmias. Lancet (1977), 2: 686–688.

    Google Scholar 

  7. Cox JL, Thomas MD, Boineau JP. The electrophysiological time-course of acute myocardial ischaemia and the effects of early coronary artery reperfusion. Circulation (1973) 48: 971–978.

    PubMed  CAS  Google Scholar 

  8. Kaplinsky E, Ogawa S, Michelson E, Dreifus L. Instantaneous and delayed ventricular arrhythmias after reperfusion of acutely ischemic myocardium: evidence for multiple mechanisms. Circulation (1981), 63: 333–340.

    Article  PubMed  CAS  Google Scholar 

  9. Murdock DK, Loeb JM, Ealer DE, Randall WC. ElectrophysioLogy of coronary reperfusion. A mechanism for reperfusion arrhythmias. Circulation (1980) 61: 175–182.

    PubMed  Google Scholar 

  10. Penkoske PA, Sobel BE, Corr PB. Disparate electrophysiological alterations accompanying dysrhythmia due to coronary occlusion and reperfusion in the cat. Circulation (1978) 58: 1023–1035.

    PubMed  Google Scholar 

  11. Russell DC, Oliver MF. VentricuLar refractoriness during acute myocardial ischaemia and its relationship to ventricular fibrillation. Cardiovasc. Res. (1978), 12: 221–227.

    Article  PubMed  Google Scholar 

  12. Naimi S, Avitall B, Meiszala J, Levine HJ. Dispersion of effective refractory period during abrupt reperfusion of ischaemic myocardium in dogs. Am.J. Cardiol. (1977), 39: 407–412.

    Article  PubMed  CAS  Google Scholar 

  13. Beck CS, Leighninger DS. Scientific basis for the surgical treatment of coronary artery disease. J Am Med Assoc (1965) 159: 1264–1271.

    Google Scholar 

  14. Russell DC. Early ventricular arrhythmias: relationship of electrophysio logy to blood flow and metabolism. In: Early Arrhythmias Resulting From Myocardial Ischaemia. Ed. Parratt JR. (1982). MacMillan Press Ltd., (London), 37–56.

    Google Scholar 

  15. Jennings RB, Reimer KA. Biology of experimental, acute myocardial ischaemia and infarction. In: Enzymes in Cardiology: Diagnosis and Research. Eds. Hearse DJ, de Leiris J. Pub. John Wiley & Sons (New York)(1978), 21–57.

    Google Scholar 

  16. Janse MJ. Electrophysiological changes in the acute phase of myocardial ischaemia and mechanisms of ventricular arrhythmias. In: Early Arrhythmias Resulting from Myocardial Ischaemia. Ed. Parratt JR. (1982). MacMiLlan Press Ltd., (London), 57–80.

    Google Scholar 

  17. Levites R, Banka VS, Heifant RH. Electrophysiologic effects of coronary occlusion and reperfusion. Circulation (1975) 52: 760–765.

    PubMed  CAS  Google Scholar 

  18. Bolli R, Brandon TA, Fisher DJ, Miller RR. Coronary collateral blood flow: a major determinant of arrhythmias during coronary occlusion and reperfusion. J Am Coll Cardiol (1983) 1: 582 (abstract).

    Article  Google Scholar 

  19. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB. Alpha adrenergic contributions to dysrhythmia during myocardial ischaemia and reperfusion in cats. J Clin Invest (1980), 65: 161–171.

    Article  PubMed  CAS  Google Scholar 

  20. Corr PB, Shayman JA, Kramer JB, Kipnis RJ. Increased alpha-adrenergic receptors in ischemic cat myocardium: a potential mediator of electrophysiological derangements. J Clin Invest (1981) 67: 1232–1326.

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg S, Greenspon AJ, Urban PL, Muza B, Berger B, Walinsky P, Maroko PR. Reperfusion arrhythmia: a marker a restoration of antegrade flow during intracoronary thrombolysis for acute myocardial infarction. Am Heart J, (1983) 105: 26–32.

    Article  PubMed  CAS  Google Scholar 

  22. Kowey PR, Verrier RL, Lown B. Effect of alpha-adrenergic receptor stimulation on ventricular electrical properties in the normal canine heart. Am Heart J (1983) 105: 366–371

    Article  PubMed  CAS  Google Scholar 

  23. Crome R, Hearse D, Manning A. Relationship between cellular cyclic AMP content and the incidence of ventricular fibrillation upon reperfusion after varying periods of ischaemia. J Mol Cell Cardiol (1983), 15; Suppl 1, 180 (abstract).

    Article  Google Scholar 

  24. Hearse DJ. Critical distinctions in the modification of myocardial cell injury. In: Calcium Antagonists. Ed. Opie LH. Raven Press (1983).

    Google Scholar 

  25. Balke CW, Kaplinsky E, Michelson EL, Naito M, Dreifus LS. Reperfusion ventricular tachyarrhythmias: correlation with antecedent coronary artery occlusion tachyarrhythmias and duration of myocardial ischemia. Am Heart J (1981) 101: 449–456.

    Article  PubMed  CAS  Google Scholar 

  26. Penny WJ, Sheridan DJ. Arrhythmias and cellular electrophysiological changes during myocardial “ischaemia” and reperfusion. Cardiovasc. Res. 17:363–372 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. Hearse DJ, Baker JE, Humphrey SM. Verapamil and the calcium paradox. J Mol Cell Cardiol (1980) 12: 733–739.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto F, Manning AS, Braimbridge MV, Hearse DJ. Cardioplegia and slow calcium channel blockers: studies with verapamil. J Thorac Cardiovasc Surg (1983) 86:252–261.

    PubMed  CAS  Google Scholar 

  29. Bergey JL, Nocella K, McCallum JD. Acute coronary artery occlusion -reperfusi on-induced arrhythmias in rats, dogs and pigs: anti-arrhythmic evaluation of quinidine procainamide and lidocaine. Eur. J. Pharmacol (1982), 81: 205–216.

    Article  PubMed  CAS  Google Scholar 

  30. Naito M, Michelson E, Kmetzo J, Kaplinsky E, Dreifus L. Failure of antiarrhythmic drugs to prevent experimental reperfusion ventricular fibrillaton. Circulation (1981) 63: 70–79.

    Article  PubMed  CAS  Google Scholar 

  31. Stephenson SE, Cole RK, Parrish TF. et al. Ventricular fibriLlation during and after coronary artery occlusion: incidence and protection afforded by various drugs. Am J Cardiol (1960) 5: 77–85.

    Article  Google Scholar 

  32. Chagnac A, Pelleg A, Belhassen B, Lubliner J, Vidne B, Laniado S. Effects of disopyramide on reperfusion arrhythmias in dogs. J Cardiovasc Pharmacol (1982), 4: 994–998.

    Article  PubMed  CAS  Google Scholar 

  33. Kabell G, Scherlag BJ, Hope RR, Lazzara R. Reperfusion arrhythmias: differential effect of Lidocaine on re-entry and enhanced automaticity. Am J Cardiol (1980). (abstract) 474.

    Google Scholar 

  34. Gamble O, Cohn K. Effect of propranolol, procainamide and lidocaine on ventricular automaticity and re-entry in experimental myocardial infarction. Circulation (1972) 46: 498–506.

    PubMed  CAS  Google Scholar 

  35. Hope FG, Marshall RJ, Winslow E. The effects of nifedipine, tetrodotoxin and bepridil on reperfusion-induced arrhythmias in the rat isolated perfused heart. Proceedings of The British Pharmacological Society C1983), C.68, (abstract).

    Google Scholar 

  36. Manning AS, Crome R, Isted K, Coltart DJ, Hearse DJ. Pharmacological prevention of reperfusion-induced ventricular fibrillation in the iso lated rat heart. J Mol Cell Cardiol (1983), 15: Suppl. 1, 413, (abstract).

    Google Scholar 

  37. Rochette L, Didier JP, Moreau D, Bratet J. Release of myocardial norepinephrine and ventricular arrhythmias following coronary reperfusion: effects of substrate and duration of the ischemic periods. J Mol Cell Cardiol (1979) Suppl 2: 49, (abstract).

    Google Scholar 

  38. Sommers HM, Jennings RB. Ventricular fibriLLation and myocardial necrosis after transient ischemia. Arch Intern Med (1972), 129: 780–789.

    Article  PubMed  Google Scholar 

  39. Thandroyen FT, Worthington MG, Higginson L, Opie LH. The effect of alpha-adrenoceptor antagonist agents on reperfusion ventricular fibrillation and metabolic status in the isoLated perfused rat heart. J Am Coll Cardiol (1983), 1: 1056–1066.

    Article  PubMed  CAS  Google Scholar 

  40. Corbalan R, Verrier RL, Lown B. Differing mechanisms for ventricular vulnerability during coronary artery occlusion and release. Am Heart J (1976) 92: 223–230.

    Article  PubMed  CAS  Google Scholar 

  41. Stewart JR, Burmeister WE, Burmeister J, Lucchesi BR. Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol (1980) 2: 77–91.

    Article  PubMed  CAS  Google Scholar 

  42. Brodde OE, Motomura S, Endoh M, Schumann HJ. Lack of correlation between the positive inotropic effect evoked by alpha-adrenoceptor stimulation and the levels of cyclic AMP and/or cyclic GMP in the isolated ventricle strip of the rabbit. J Mol Cell Cardiol (1978), 10: 207–219.

    Article  PubMed  CAS  Google Scholar 

  43. Corr PB, Penkoske PB, Sobel BE. Adrenergic influences on arrhythmias due to coronary occLusion and reperfusion. Br Heart J (1978) 40: (Suppl) 62–70.

    Google Scholar 

  44. Sharma A, Lee B, Saffitz B, Sobel B, Corr P. Alpha adrenergic mediated accumulation of calcium in reperfused myocardium. J Clin Invest (1983) 72: 802–818.

    Article  PubMed  Google Scholar 

  45. Rosen MR, Gelband H, Hoffmann B. Effects of phentolamine on electrophysiologic properties of isolated canine Purkinje fibers. J Pharmacol Exp Ther (1971) 179: 586–593.

    PubMed  CAS  Google Scholar 

  46. Majid PA, Saxton C, Dykes JR, Galvin MC, Taylor SH. Automatic control of insulin secretion and the treatment of heart failure. Br Med J (1970) 320–323.

    Google Scholar 

  47. Pfister B, Imhof PR. Inhibition of adrenaline-induced platelet aggregation by the orally administered alpha-adrenergic receptor blocker phentolamine (Regitine). Eur J CLin Pharmacol (1977) 11: 7–14.

    Article  PubMed  CAS  Google Scholar 

  48. Ribiero LGT, Brandon TA, Debauch TL, Maroko PR, Miller RR. Antiarrhythmic and hemodynamic effects of calcium channel blocking agents during coronary arterial reperfusion. Am J Cardiol (1981) 48: 69–74.

    Article  Google Scholar 

  49. Sheehan FH, Epstein SE. Effects of calcium channel blocking agents on reperfusion arrhythmias. Am Heart J (1982) 103, 973–977.

    Article  PubMed  CAS  Google Scholar 

  50. Coker S, Parratt J. Nifedipine reduces arrhythmias but does not alter prostanoid release during coronary artery occlusion and reperfusion in anaesthetized greyhounds J Cardiovasc Pharmacology (1983) 5: 406–417.

    Article  CAS  Google Scholar 

  51. Coker S, Parratt J. Late administration of nifedipine fails to prevent reperfusion induced ventricular fibrillation in anaesthetized greyhounds. Brit J. Pharmacol. In press 1984.

    Google Scholar 

  52. Verdouw PD, Hartog JM, tenCate FJ, Schamhardt HC, Bastiaans OL, van Bremen RH, Serruys PW, Hugenholtz PG. Effects of nifedipine on the recovery of regional myocardial performance during reperfusion of ischaemic myocardium. Prog Pharmacol (1981) 4: 91–100.

    CAS  Google Scholar 

  53. Brooks WW, Verrier RL, Lown B. Protective effect of verapamil on vulnerability to ventricular fibrillation during myocardial ischaemia and reperfusion. Cardiovasc Res (1980) 14: 295–302.

    Article  PubMed  CAS  Google Scholar 

  54. Karliner JS, Motulsky HJ, Dunlop J, Heller Brown J, Insel PA. Verapamil competitively inhibits alpha-adrenergic and muscarinic but not beta-adrenergic receptors in rat myocardium. J Cardiovasc Pharmacol (1982), 4: 515–520.

    Article  PubMed  CAS  Google Scholar 

  55. Motulsky HJ, Snavely MD, Hughes RJ, Insel PA. Interaction of verapamil and other calcium channel blockers with alpha-1 and alpha-2 adrenergic receptors. Circ Res (1983) 52: 226–231

    PubMed  Google Scholar 

  56. Rosenberger L, Triggle DJ. Calcium, calcium translocation and specific caLcium antagonists. In: Calcium in Drug Action. Ed. Weiss GB. pp3–31. Plenum Press: New York (1978).

    Google Scholar 

  57. Nayler WG, Thompson JE, Jarrott B. The interaction of calcium antagonists (slow channel blockers) with myocardial alpha adrenoceptors.J Mol Cell Cardiol (1982) 14:185–188. 63. Opie LH, Norris RM, Thomas M, Holland AJ, Owen P, Van Noorden S. Failure of high concentrations of free fatty acids to provoke arrhythmias in experimental myocardial infarction. Lancet (1971), 1: 818–822.

    Article  PubMed  CAS  Google Scholar 

  58. Wenger T, Lederman S, Starmer F, Brown T, Strauss H. New approach to assessing efficacy of interventions on reperfusion-ventricular fibrillation: effect of bretylium. Circulation (1982) 66: 11–130, (abstract).

    Google Scholar 

  59. Kane KA, Parratt JR, Williams FM. Reperfusion-induced cardiac arrhythmias in the anaesthetized rat and their susceptibility to drugs. Proceedings of The British Pharmacological Society (1983) p.35, (abstract).

    Google Scholar 

  60. Fagbemi O, Kane K, Parratt J. Creatine phosphate suppresses ventricular arrhythmias resulting from coronary artery ligation. J Cardiovasc Pharmacol (1982) 4: 53–58.

    Article  PubMed  CAS  Google Scholar 

  61. Opie LH, Thandroyen F, Saman S, Yon E. Ketanserin a serototin antagonist prevents ischemic and reperfusion ventricular arrhythmias. Circulation, 68:Suppl.III, 390 (1983) (abstract).

    Google Scholar 

  62. Coker S. Early ventricular arrhythmias arising from acute myocardial ischaernia; possible involvement of prostaglandins and thromboxanes. In: Early Arrhythmias Resulting From Myocardial Ischaemia. Ed. Parratt JR. (1982) MacMillan Press Ltd., (London).

    Google Scholar 

  63. Coker SJ, Parratt JR, Ledingham I, Zeitlin IJ. Thromboxane and prostacyclin release from ischaemic myocardium in relation to arrhythmias. Nature, (1981) London 291: 323–324.

    Article  PubMed  Google Scholar 

  64. Coker S, Parratt JR. Nafazatrom, prostacyclin and ZK 36374 suppress reperfusion-induced ventricular fibrillation in anaesthetized greyhounds. Br J Pharmacology (1983 In press).

    Google Scholar 

  65. McCord JM, Fridovich I. The reduction of cytochromec by milk xanthine oxidase. J Biol Chem. (1968), 243: 5753–5758.

    PubMed  CAS  Google Scholar 

  66. Akizuki S, Yoshida S, Chambers D, Eddy L, Parmley L, Yellon D, Downey J. Blockage of the O2 radical producing enzyme, xanthine oxidase, reduces infarct size in the dog. Circulation (in press, 1983).

    Google Scholar 

  67. Gauduel Y, Duvelleroy M. Evidence for the role of oxygen radicals in the cardiac “oxygen paradox”. Journal of Molecular and Cellular CardioLogy (in press 1983).

    Google Scholar 

  68. Woodward B, Zakaria M. The effects of glutathione and superoxide dismutase on reperfusion arrhythmias in the isolated rat heart. Procedings of the British Pharmacological Society (in press, 1983).

    Google Scholar 

  69. Manning AS, Coltart DJ, Hearse DJ. Ischemia and reperfusion induced arrhythmias in the in vivo rat: a possible role for free radicals. Brit Heart J. In the press 1984.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Hearse, D.J., Manning, A.S. (1985). The Genesis and Control of Reperfusion Arrhythmias. In: Beamish, R.E., Singal, P.K., Dhalla, N.S. (eds) Stress and Heart Disease. Developments in Cardiovascular Medicine, vol 45. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2587-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2587-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9622-5

  • Online ISBN: 978-1-4613-2587-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics