Advertisement

Pathophsiology of Coronary Artery Disease in Humans

  • Peter F. Cohn
  • Pantel S. Vokonas

Abstract

The clinical presentation of coronary artery disease is familiar to most physicians, but the pathophysiologic basis of myocardial ischemia in humans—with its relevant therapeutic implications—has become evident only within the last two decades. There had once been almost no hemodynamic or metabolic information regarding mechanisms of the anginal state in humans, for example, but now there are a great number of such studies in the medical literature. To these have been added new investigations of the coronary circulation. The purpose of the present chapter is to review the important pathoanatomic and pathophysiologic features of coronary artery disease in humans and to relate them to the clinical setting whenever possible.

Keywords

Coronary Artery Disease Myocardial Ischemia Angina Pectoris Myocardial Blood Flow Coronary Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross, R. and Glomset, J.A. The pathogenesis of atherosclerosis. N. Engl. J. Med. 295: 369, 420, 1976.PubMedGoogle Scholar
  2. 2.
    Niewiarowski, S. and Rao, A.K. Contribution of thrombogenic factors to the pathogenesis of atherosclerosis. Prog. Cardiovasc. Dis. 26: 197, 1983.PubMedGoogle Scholar
  3. 3.
    Benditt, E.P. and Benditt, J.M. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci. U.S.A. 70: 1753, 1973.PubMedGoogle Scholar
  4. 4.
    Martin, G.M. and Sprague, C.A. Symposium on in vitro studies related to atherogenesis: Life histories of hyperplastoid cell lines from the aorta and skin. Exp. Mol. Pathol. 18: 125, 1973.PubMedGoogle Scholar
  5. 5.
    Small, D.M. Cellular mechanisms for lipid deposition in atherosclerosis. N. Engl. J. Med. 297: 873, 294, 1977.Google Scholar
  6. 6.
    Walton, K.W. Pathogenetic mechanisms in atherosclerosis. Am. J. Cardiol. 35: 542, 1975.PubMedGoogle Scholar
  7. 7.
    Goldstein, J.L., Kita, T., and Brown, M.S. Defective lipoprotein receptors and atherosclerosis: Lessons from an animal counterpart of familial hypercholesterolemia. N. Engl. J. Med. 309: 288, 1983.PubMedGoogle Scholar
  8. 8.
    Chobanian, A.V. The influence of hypertension and other hemodynamic factors in atherogenesis. Prog. Cardiovasc. Dis. 26: 177, 1983.PubMedGoogle Scholar
  9. 9.
    Kannel, W.B. High-density lipoproteins: Epidemiologic profile and risks of coronary artery disease. Am. J. Cardiol. 92: 9B, 1983.Google Scholar
  10. 10.
    Roberts, W.C. Coronary heart disease: A review of the abnormalities observed in the coronary arteries. Cardiovasc. Med. 2: 29, 1977.Google Scholar
  11. 11.
    Gorlin, R. Coronary Anatomy. In Coronary Artery Disease. Philadelphia: Saunders, 1976, p. 56.Google Scholar
  12. 12.
    Cohen, L.S., Elliott, W.C., Klein, M.D., and Gorlin, R. Coronary heart disease: Clinical, cinearteriographic and metabolic correlations. Am. J. Cardiol. 17: 152, 1966.Google Scholar
  13. 13.
    Proudfit, W.L., Shirey, E.K., Sheldon, W.C., and Sones, F.M., Jr. Certain clinical characteristics correlated with extent of obstructive lesions demonstrated by selective cine coronary arteriography. Circulation 38: 947, 1968.PubMedGoogle Scholar
  14. 14.
    Goldberg, S., Grossman, W., Markis, J.E., Cohen, M.V., Baltaxe, H.A., and Levin, D.C. Total occlusion of the left main coronary artery: A clinical hemodynamic and angiographic profile. Am. J. Med. 64: 3, 1978.PubMedGoogle Scholar
  15. 15.
    Markis, J.E., Joffe, C.D., Cohn, P.F., Feen, D J., Herman, M.V., and Gorlin, R. Clinical significance of coronary arterial ectasia. Am. J. Cardiol. 37: 217, 1976.PubMedGoogle Scholar
  16. 16.
    Oliva, P.B. Unstable rest angina with ST-segment depression: Pathophysiologic considerations and therapeutic implications. Ann. Int. Med. 100: 424, 1984.PubMedGoogle Scholar
  17. 17.
    Cohen, M.V. The functional value of coronary collaterals in myocardial ischemia and therapeutic approach to enhance collateral flow. Am. Heart J. 95: 396, 1978.PubMedGoogle Scholar
  18. 18.
    Gorlin, R. Coronary Collaterals. In Coronary Artery Disease. Philadelphia: Saunders, 1976, p. 65.Google Scholar
  19. 19.
    Levin, D.C. Pathways and functional significance of the coronary collateral circulation. Circulation 50: 831, 1974.PubMedGoogle Scholar
  20. 20.
    Goldberg, H.L., Goldstein, J., Borer, J.S., Moses, J.W., and Collins, M.B. Functional importance of coronary collateral vessels. Am. J. Cardiol. 53: 694, 1984.PubMedGoogle Scholar
  21. 21.
    Chandler, A.B., Chapman, I., Erhardt, L.R., Roberts, W.C., Schwartz, C.J., Sinapius, D., Spain, D.M., Sherry, S., Ness, P.M., and Simon, T.L. Coronary thrombosis in myocardial infarction: Report of a workshop on the role of coronary thrombosis in the pathogenesis of acute myocardial infarction. Am. J. Cardiol. 34: 823, 1974.PubMedGoogle Scholar
  22. 22.
    Oliva, P.B. Pathophysiology of acute myocardial infarction, 1981. Ann. Int. Med. 94: 236, 1981.PubMedGoogle Scholar
  23. 23.
    Dalen, J.E., Ockene, I.S., and Alpert, J.S. Coronary spasm, coronary thrombosis, and myocardial infarction: A hypothesis concerning the pathophysiology of acute myocardial infarction. Am. Heart J. 104: 1119, 1982.PubMedGoogle Scholar
  24. 24.
    Braunwald, E., Ross, J., Jr., and Sonnenblick, E.H. Myocardial Energetics. In Mechanisms of Contraction of the Normal and Failing Heart ( 2nd ed. ). Boston: Little, Brown, 1976, p. 171.Google Scholar
  25. 25.
    Amsterdam, E.A., Hughes, J.L., DeMaria, A.N., Zelis, R., and Mason, D.T. Indirect assessment of myocardial oxygen consumption in the evaluation of mechanisms and therapy of angina pectoris. Am. J. Cardiol. 33: 737, 1974.PubMedGoogle Scholar
  26. 26.
    Gobel, F.L., Nordstrom, L.A., Nelson, R.R., Jorgensen, C.R., and Wang, Y. The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris. Circulation 57: 549, 1978.PubMedGoogle Scholar
  27. 27.
    Robinson, B.F. Relation of heart rate and systolic blood pressure to the onset of pain in angina pectoris. Circulation 35: 1073, 1967.PubMedGoogle Scholar
  28. 28.
    Hoffman, J.I.E. and Buckberg, G.D. The myocardial supply: demand ratio. A critical review. Am. J. Cardiol. 41: 327, 1978.PubMedGoogle Scholar
  29. 29.
    Braunwald, E., Ross, JJ., Jr., and Sonnenblick, E.H. Regulation of Coronary Blood Flow. In Mechanisms of Contraction of the Normal and Failing Heart ( 2nd ed. ). Boston: Little, Brown, 1976, p. 208.Google Scholar
  30. 30.
    Rubio, R. and Berne, R.M. Regulation of coronary blood flow. Prog. Cardiovasc. Dis. 18: 105, 1975.PubMedGoogle Scholar
  31. 31.
    Ball, R.M. and Bache, R.J. Distribution of myocardial blood flow in the exercising dog with restricted coronary artery inflow. Circ. Res. 38: 60, 1976.PubMedGoogle Scholar
  32. 32.
    Archie, J.P., Jr. Intramyocardial pressure: Effect of preload on transmural distribution of systolic coronary blood flow. Am. J. Cardiol. 35: 904, 1974.Google Scholar
  33. 33.
    Gould, K.L., Lipscomb, K., and Hamilton, G.W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am. J. Cardiol. 33: 87, 1974.PubMedGoogle Scholar
  34. 34.
    Gould K.L., Lipscomb, K., and Calvert, C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51: 1085, 1975.PubMedGoogle Scholar
  35. 35.
    Lipscomb, K. and Hooten, S. Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary artery stenoses. Am. J. Cardiol. 42: 781, 1978.PubMedGoogle Scholar
  36. 36.
    Klocke, FT Coronary blood flow in man. Prog. Cardiovasc. Dis. 19: 117, 1976.PubMedGoogle Scholar
  37. 37.
    Cannon, P.J., Sciacca, R.R., Fowler, D.L., Weiss, M.B., Schmidt, D.H., and Casarella, W J. Measurement of regional myocardial blood flow in man: Description and critique of the method using xenon-133 and a scintillation camera. Am. J. Cardiol. 36: 783, 1975.PubMedGoogle Scholar
  38. 38.
    Ganz, W., Tamura, K., Marcus, H.S., Donoso, R., Yoshida, S., and Swan, HJ.C. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44: 181, 1971.PubMedGoogle Scholar
  39. 39.
    Cohen, A., Gallagher, J.R., Luebs, E.D., Vargo, A., Yamanaka, J., Zaleski, EJ., Bluemchen, G., and Bing, R J. Quantitative determination of coronary flow with positron emitter (rubidium-84). Circulation 32: 636, 1965.PubMedGoogle Scholar
  40. 40.
    Rowe, G.G., Thomsen, J.H., Stenlund, R.R., McKenna, D.H., Sialer, S. and Corliss, R.J. A study of hemodynamics and coronary blood flow in man and its relation to the coronary arteriogram. Circulation 39: 139, 1969.PubMedGoogle Scholar
  41. 41.
    Klocke, FJ. and Wittenberg, S.M. Heterogeneity of coronary blood flow in human coronary artery disease and experimental myocardial infarction. Am. J. Cardiol. 24: 872, 1969.Google Scholar
  42. 42.
    Cowan, C., Duran, P.V.M., Corsin, G., Goldschlager, N., and Bing, R J. The effects of nitroglycerin on myocardial blood flow in man: Measured by coincidence counting and bolus injection of 84-rubidium. Am. J. Cardiol. 24: 154, 1969.PubMedGoogle Scholar
  43. 43.
    Knoebel, S.B., McHenry, P.L., Bonner, A J., and Phillips, J.F. Myocardial blood flow in coronary artery disease. Effect of right atrial pacing and nitroglycerin. Circulation 47: 690, 1973.PubMedGoogle Scholar
  44. 44.
    Knoebel, S.B., McHenry, P.L., Phillips, J.F., and Widlansky, S. Atropine-induced cardioacceleration and myocardial blood flow in subjects with and without coronary artery disease. Am. J. Cardiol. 33: 327, 1974.PubMedGoogle Scholar
  45. 45.
    Mudge, G.H., Jr., Grossman, W., Mills, R.M., Jr., Lesch, M., and Braunwald, E. Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N. Engl. J. Med. 295: 1333, 1976.PubMedGoogle Scholar
  46. 46.
    Wilson, J.R., Martin, J.L., Untereker, W.J., Laskey, W., and Hirshfeld, J.W. Sequential changes in regional coronary flow during pacing-induced angina pectoris: Coronary flow limitation precedes angina. Am. Heart J. 107: 269, 1984.PubMedGoogle Scholar
  47. 47.
    Selwyn, A.P., Forse, G., Fox, K., Jonathan, A., and Steiner, R. Patterns of disturbed myocardial perfusion in patients with coronary artery disease: Regional myocardial perfusion in angina pectoris. Circulation 64: 83, 1981.PubMedGoogle Scholar
  48. 48.
    Chen, P.H., Nichols, A.B., Weiss, M.B., Sciacca, R.R., Walter, P.D. and Cannon, P J. Left ventricular myocardial blood flow in multi-vessel coronary artery disease. Circulation 66: 537, 1982.PubMedGoogle Scholar
  49. 49.
    Dwyer, E.M.,Jr., Dell, R.B., and Cannon, PJ. Regional myocardial flow in transmural myocardial infarction. Circulation 48: 924, 1973.PubMedGoogle Scholar
  50. 50.
    See, J.R., Cohn, P.F., Holman, B.L., Roberts, B.H., and Adams, D.F. Angiographical abnormalities associated with alterations in regional myocardial blood flow in coronary artery disease. Br. Heart J. 38: 1278, 1976.PubMedGoogle Scholar
  51. 51.
    See, J.R., Cohn, P.F., Holman, B.L., Adams, D.F., and Maddox, D.E. Significance of reduced regional myocardial blood flow in asynergic areas evaluated with intervention ventriculography. Am. J. Cardiol. 43: 179, 1979.PubMedGoogle Scholar
  52. 52.
    Cohn, P.F., Maddox, D.E., Holman, B.L., and See, J.R. Effect of coronary collateral vessels on regional myocardial blood flow in patients with coronary artery disease: Relation of collateral circulation to vasodilatory reserve and left ventricular function. Am. J. Cardiol. 46: 359, 1980.PubMedGoogle Scholar
  53. 53.
    Malacoff, R.F., Mudge, G.H., Jr., Holman, B.L., Idoine, J., Bifolck, L., and Cohn, P.F. Effect of the cold pressor test on regional myocardial blood flow in patients with coronary artery disease. Am. Heart J. 106: 78, 1983.PubMedGoogle Scholar
  54. 54.
    Hamilton, G.W., Ritchie, J.L., Allend, D., Lapin, E., and Murray, J.A. Myocardial perfusion imaging with 99mTc or 113m In macroaggregated albumin: Correlation of the perfusion image with clinical, angiographic, surgical and histologic findings. Am. Heart J. 89: 708, 1975.PubMedGoogle Scholar
  55. 55.
    Ritchie, J.L., Hamilton, G.W., Gould, K.L., Allen, D., Kennedy, J.W., and Hammermeister, K.E. Myocardial imaging with indium-113m-and technetium-99m-macroaggregated albumin. New procedure for identification of stress induced regional ischemia. Am. J. Cardiol. 35: 380, 1975.PubMedGoogle Scholar
  56. 56.
    Holman, B.L., Cohn, P.F., Adams, D.F., See, J.R., Roberts, B.H., Idoine, J., and Gorlin, R. Regional myocardial blood flow during hyperemia induced by contrast agent In patients with coronary artery disease. Am. J. Cardiol. 38: 416, 1976.PubMedGoogle Scholar
  57. 57.
    Zaret, B.L., Strauss, H.W., Wells, H.P.,Jr., and Flamin, M.D. Noninvasive regional myocardial perfusion with radioactive potassium: Study of patients at rest, with exercise and during angina pectoris. N. Engl. J. Med. 288: 809, 1973.PubMedGoogle Scholar
  58. 58.
    Albro, P.C., Gould, K.L., Westcott, R J., Hamilton, G.W., Ritchie, J.L., and Williams, D.L. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. III. Clinical trial. Am. J. Cardiol. 42: 751, 1978.PubMedGoogle Scholar
  59. 59.
    Selwyn, A.P., Allan, R.M. and L’Abbate A. Relations between regional myocardial uptake of rubidium-82 and perfusion. Am. J. Cardiol. 50: 112, 1982.PubMedGoogle Scholar
  60. 60.
    Maseri, A. and Chierchia, S. Coronary artery spasm: Demonstration, definition, diagnosis and consequences. Prog. Cardiovasc. Dis. 25: 169, 1982.PubMedGoogle Scholar
  61. 61.
    Crea, F., Davies, G., Romeo, F., Chierchia, S., Bugiardini, R., Kaski, J.C., Freedman, B., and Maseri, A. Myocardial ischemia during ergonovine testing: Different susceptibility to coronary vasoconstriction in patients with exertional and variant angina. Circulation 69: 690, 1984.PubMedGoogle Scholar
  62. 62.
    Schiffer, F., Hartley, L.H., Schulman, C.L., and Abelmann, W.H. Evidence for emotionally-induced coronary arterial spasm in patients with angina pectoris. Br. Heart J. 44: 62, 1980.PubMedGoogle Scholar
  63. 63.
    Bassan, M.M., Marcus, H.S., and Ganz, W. The effect of mild-to-moderate mental stress on coronary hemodynamics in patients with coronary artery disease. Circulation 62: 933, 1980.PubMedGoogle Scholar
  64. 64.
    Lassvik, C.T. and Areskog, N.H. Angina in cold environment: Reactions to exercise. Br. Heart J. 42: 396, 1979.PubMedGoogle Scholar
  65. 65.
    Feldman, R.L., Whittle, J.L., Marx, J.D., Pepine, CJ., and Conti, C.R. Regional coronary hemodynamic responses to cold stimulation in patients without variant angina. Am. J. Cardiol. 49: 665, 1982.PubMedGoogle Scholar
  66. 66.
    Goldstein, R.E., Redwood, B.R., Rosing, D.R., Beiser, G.D., and Epstein, S.E. Alterations in the circulatory response to exercise following a meal and their relationship in postprandial angina pectoris. Circulation 44: 90, 1971.PubMedGoogle Scholar
  67. 67.
    Figueras, J., Singh, B.N., Ganz, W., and Swan, HJ.C. Haemodynamic and electrocardiographic accompaniments of resting postprandial angina. Br. Heart J. 42: 402, 1979.PubMedGoogle Scholar
  68. 68.
    Mehta,J., Mehta, P., Feldman, R.L., and Horalek, C. Thromboxane release in coronary artery disease: Spontaneous versus pacing-induced angina. Am. Heart J. 107: 286, 1984.PubMedGoogle Scholar
  69. 69.
    Chierchia, S., Davies, G., Berkenboom, G., Crea, F., Crean, P., and Maseri, A. a-Adrenergic receptors and coronary spasm: An elusive link. Circulation 69: 8, 1984.PubMedGoogle Scholar
  70. 70.
    Aranow, W.S. Smoking, carbon monoxide, and coronary heart disease. Circulation 48: 1169, 1973.Google Scholar
  71. 71.
    Brachfield, N. Metabolism of Myocardial Ischemia. In E Donoso and R. Gorlin (eds.), Current Cardiovascular Topics, Vol. III: Angina Pectoris. New York: Grune & Stratton, 1977, p. 1.Google Scholar
  72. 72.
    Jennings, R.B. Early phase of myocardial ischemic injury and infarction. Am. J. Cardiol. 24: 753, 1969.PubMedGoogle Scholar
  73. 73.
    Herman, M.V., Elliott, W.C., and Gorlin, R. An electrocardiographic, anatomic, and metabolic study of zonal myocardial ischemia in coronary heart disease. Circulation 35: 834, 1967.PubMedGoogle Scholar
  74. 74.
    Mudge, G.H., Jr., Mills, R.M., Jr., Taegtmeyer, H., Gorlin, R. and Lesch, M. Alterations of myocardial amino acid metabolism in chronic heart disease. J. Clin. Invest. 58: 1185, 1976.PubMedGoogle Scholar
  75. 75.
    Vrobel, T.R., Jorgensen, C.R., and Bache, RJ. Myocardial lactate and adenosine metabolite production as indicators of exercise-induced myocardial ischemia. Circulation 66: 555, 1982.Google Scholar
  76. 76.
    Braunwald, E., Ross, J., Jr., and Sonnenblick, E.H. Structure and Function of the Myocardial Cell. In Mechanisms of Contraction of the Normal and Failing Heart ( 2nd ed. ). Boston: Little, Brown, 1976, p. 28.Google Scholar
  77. 77.
    Katz, A.M. Effects of ischemia on the contractile processes of heart muscle. Am. J. Cardiol. 32: 456, 1973.PubMedGoogle Scholar
  78. 78.
    Cohn, P.F., Herman, M.V., and Gorlin, R. Ventricular dysfunction in coronary artery disease. Am. J. Cardiol. 33: 307, 1974.PubMedGoogle Scholar
  79. 79.
    Moraski, R.E., Russell, R.O., Jr., Smith, M., and Rackley, C.E. Left ventricular function in patients with and without myocardial infarction and one, two or three vessel coronary artery disease. Am. J. Cardiol. 35: 1, 1975.PubMedGoogle Scholar
  80. 80.
    Cohn, P.F. and Gorlin, R. Abnormalities of left ventricular function associated with the anginal state. Circulation 46: 1065, 1972.PubMedGoogle Scholar
  81. 81.
    McCans, J.L. and Parker, J.O. Left ventricular pressure-volume relationships during myocardial ischemia in man. Circulation 48: 775, 173.Google Scholar
  82. 82.
    Barry, W.H., Brooker, J.Z., Alderman, E.L., and Harrison, D.C. Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation 49: 255, 1974.PubMedGoogle Scholar
  83. 83.
    Mann, T., Goldberg, S., Mudge, G.H., and Grossman, W. Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation 59: 114, 1979.Google Scholar
  84. 84.
    Sharma, B., Behrens, T.W., Erlein, D., Hodges, M., Asinger, R.W., and Francis, G.S. Left ven- tricular diastolic properties and filling characteristics during spontaneous angina pectoris at rest. Am. J. Cadiol. 52: 704, 1983.Google Scholar
  85. 85.
    Carroll, J.D., Hess, O.M., Hirzel, H.O., and Krayenbuehl, H.P. Exercise-induced ischemia: The influence of altered relaxation on early diastolic pressures. Circulation 67: 521, 1983.PubMedGoogle Scholar
  86. 86.
    Bourdillon, P.D., Lorell, B.H., Mirsky, I., Paulus, W.J., Wynne, J., and Grossman, W. Increased regional myocardial stiffness of the left ventricle during pacing-induced angina in man. Circulation 67: 316, 1983.PubMedGoogle Scholar
  87. 87.
    Dehmer, GJ., Lewis, S.E., Hillis, L.D., Corbett, J., Parkey, R.W., and Willerson, J.T. Exercise-induced alterations in left ventricular volumes and the pressure-volume relationship: A sensitive indicator of left ventricular dysfunction in patients with coronary artery disease. Circulation 63: 1008, 1981.PubMedGoogle Scholar
  88. 88.
    Helfant, R.H., Forrester, J.S., Hampton, J.R., Haft, J.I., Kemp, H.G., and Gorlin, R. Coronary heart disease. Differential hemodynamic, metabolic, and electrocardiographic effects in subjects with and without angina pectoris during atrial pacing. Circulation 42: 601, 1970.PubMedGoogle Scholar
  89. 89.
    Herman, M.V. and Gorlin, R. Implications of left ventricular asynergy. Am. J. Cardiol. 23: 538, 1969.PubMedGoogle Scholar
  90. 90.
    Ideker, R.E., Behar, V.S., Wagner, G.S., Starr, J.W., Starmer, C.F., Leff, K.L., and Hackel, D.B. Evaluation of asynergy as an indicator of myocardial fibrosis. Circulation 57: 715, 1978.PubMedGoogle Scholar
  91. 91.
    Markis, J.E., Joffee, C.D., Roberts, B.H., Ransil, B J., Cohn, P.F., Herman, M.V., and Gorlin, R. Evolution of left ventricular dysfunction in coronary artery disease: Serial cineangiographic studies without surgery. Circulation 62: 141, 1980.PubMedGoogle Scholar
  92. 92.
    Bodenheimer, M.M., Banka, V.S., and Helfant, R.H. Q waves and ventricular asynergy: Predictive value and hemodynamic significance of anatomical localization. Am. J. Cardiol. 35: 615, 1975.PubMedGoogle Scholar
  93. 93.
    Pasternac, A., Gorlin, R., Sonnenblick, E.H., Haft, J.I., and Kemp, H.G. Abnormalities of ventricular motion induced by atrial pacing in coronary artery disease. Circulation 45: 1195, 1972.PubMedGoogle Scholar
  94. 94.
    Sharma, B. and Taylor, S.H. Localization of left ventricular ischemia in angina pectoris by cineangiography during exercise. Br. Heart J. 37: 963, 1975.PubMedGoogle Scholar
  95. 95.
    Crawford, M.H., Petru, M.A., Amon, K.W., Sorensen, S.G., and Vance, W.S. Comparative value of 2-dimensional echocardiography and radionuclide angiography for quantitating changes in left ventricular performance during exercise limited by angina pectoris. Am. J. Cardiol. 53: 42, 1984.PubMedGoogle Scholar
  96. 96.
    Leong, K-H and Jones, R.H. Influence of the location of left anterior descending coronary artery stenosis on left ventricular function during exercise. Circulation 65: 109, 1982.PubMedGoogle Scholar
  97. 97.
    Braunwald, E. and Kloner, R.A. The stunned myocardium: Prolonged, post-ischemia ventricular dysfunction. Circulation 66: 1146, 1982.PubMedGoogle Scholar
  98. 98.
    Horn, H.R., and Teichholz, L.E., Cohn, P.F., Herman, M.V., and Gorlin, R. Augmentation of left ventricular contraction pattern in coronary artery disease by inotropic catecholamines: The epinephrine ventriculogram. Circulation 49: 1063, 1974.PubMedGoogle Scholar
  99. 99.
    Dyke, S.H., Cohn, P.F., Gorlin, R., and Sonnenblick, E.H. Detection of residual myocardial function in coronary artery disease using postextrasystolic potentiation. Circulation 50: 694, 1974.PubMedGoogle Scholar
  100. 100.
    McAnulty,J.H., Hattenhauer, M.T., Rosche,J., Kloster, F.E., and Rahimtoola, S.H. Improvement in left ventricular wall motion following nitroglycerin. Circulation 51: 140, 1975.PubMedGoogle Scholar
  101. 101.
    Bodenheim, M.M., Banka, V.S., Hermann, G.A., Trout, R.G., Pasdar, H., and Helfant, R.H. Reversible asynergy: Histopathologic and electrographic correlations in patients with coronary artery disease. Circulation 53: 792, 1976.Google Scholar
  102. 102.
    Banka, V.S., Bodenheimer, M.M., and Helfant, R.H. Determinants of reversible asynergy: Effect of pathologic Q waves, coronary collateral and anatomic location. Circulation 50: 714, 1974.PubMedGoogle Scholar
  103. 103.
    Banka, V.S., Bodenheimer, M.M., and Helfant, R.H. Determinants of reversible asynergy: The native coronary circulation. Circulation 52: 810, 1975.PubMedGoogle Scholar
  104. 104.
    Askenazi,J., Parisi, A.F., Cohn, P.F., Freedman, W.B., and Braunwald, E. Value of the QRS complex in assessing left ventricular ejection fraction. Am. J. Cardiol. 41: 494, 1978.PubMedGoogle Scholar
  105. 105.
    Cohn, P.F., Angoff, G.H., Zoll, P.M., Sloss, L J., Markis, J.E., Graboys, T.B., Green, L.H., and Braunwald, E. A new, noninvasive technique for inducing postextrasystolic potentiation during echocardiography. Circulation 56: 598, 1977.PubMedGoogle Scholar
  106. 106.
    Cohn, P.F., Angoff, G.H., and Sloss, LJ. Noninvasively-induced postextrasystolic potentiation of ischemic and infarcted myocardium in patients with coronary artery disease. Am. Heart J. 97: 187, 1979.PubMedGoogle Scholar
  107. 107.
    Verani, M.S., Carroll, R.J., and Falsetti, H.L. Mitral valve prolapse in coronary artery disease. Am. J. Cardiol. 37: 1, 1976.PubMedGoogle Scholar
  108. 108.
    Aranda, L.M., Befeler, B., Lazzaro, R., Embi, A., and Machado, H. Mitral valve prolapse and coronary artery disease. Clinical, hemodynamic and angiographic correlations. Circulation 52: 245, 1975.PubMedGoogle Scholar
  109. 109.
    Swan, HJ.C., Forrester, J.S., Diamond, G., Chatterjee, K., and Parmley, W.W. Hemodynamic spectrum of myocardial infarction and cardiogenic shock: A conceptual model. Circulation 45: 1097, 1972.PubMedGoogle Scholar
  110. 110.
    Gorlin, R., Klein, M.D., and Sullivan, J.M. Prospective correlative study of ventricular aneurysm. Mechanistic concept and clinical recognition. Am. J. Med. 42: 512, 1967.PubMedGoogle Scholar
  111. 111.
    Parmley, W.W., Chuck, L., Kivowitz, C., Matloff, J.M., and Swan, HJ.C. In vitro length-tension relations of human ventricular aneurysms. Relation of stiffness to mechanical disadvantage. Am. J. Cardiol. 32:889, 1973.PubMedGoogle Scholar
  112. 112.
    Cheng, T.O. Incidence of ventricular aneurysm in coronary artery disease. An angiographic appraisal. Am. J. Med. 50: 340, 1971.PubMedGoogle Scholar
  113. 113.
    Klein, M.D., Herman, M.V., and Gorlin, R. A hemodynamic study of left ventricular aneurysm. Circulation 35: 614, 1967.PubMedGoogle Scholar
  114. 114.
    Visser, C.A., Kan, G., David, G.K., Lie, K.I., and Durrer, D. Echocardiographic-cineangiographic correlation in detecting left aneurysm: A prospective study of 422 patients. Am. J. Cardiol, 50: 337, 1982.PubMedGoogle Scholar
  115. 115.
    Burch, G.E., DePasquale, N.P., and Phillips, J.H. The syndrome of papillary muscle dysfunction. Am. Heart J. 75: 399, 1968.PubMedGoogle Scholar
  116. 116.
    Gahl, K., Sutton, R., Pearson, M., Caspari, P., Lairet, A., and McDonald, L. Mitral regurgitation in coronary heart disease. Br. Heart J. 39: 13, 1977.PubMedGoogle Scholar
  117. 117.
    Shelburne, J.C., Rubeinstein, D., and Gorlin, R. A reappraisal of papillary muscle dysfunction. Correlative, clinical and angiographic study. Am. J. Med. 46: 862, 1969.PubMedGoogle Scholar
  118. 118.
    Burch, G.E., Giles, T.D., and Colcolough, H.L. Ischemic cardiomyopathy. Am. Heart J. 79: 291, 1970.PubMedGoogle Scholar
  119. 119.
    Yatteau, R.F., Peter R.H., Behar, V.S., Bartel, A.G., Rosati, R.A., and Kong, Y. Ischemic cardiomyopathy: The myopathy of coronary artery disease. Natural history and results of medical versus surgical treatment. Am. J. Cardiol. 34: 520, 1974.PubMedGoogle Scholar
  120. 120.
    Dash, H., Johnson, R.A., Dinsmore, R.E., and Harthorne, J.W. Cardiomyopathic syndrome due to coronary artery disease. I. Relation to angiographic extent of coronary disease and to remote myocardial infarction. Br. Heart J. 39: 733, 1977.PubMedGoogle Scholar
  121. 121.
    Starling, M.R., Crawford, M.H., Sorensen, S.G., and Grover, F.L. Comparative value of invasive and noninvasive techniques for identifying left ventricular mural thrombi. Am. Heart J. 106: 1143, 1983.PubMedGoogle Scholar
  122. 122.
    Fozzard, H.A. and DasGupta, D.S. Electrophysiology and the electrocardiogram. Mod. Conc. Cardiovasc. Dis. 44: 29, 1975.Google Scholar
  123. 123.
    Kupersmith, J. Electrophysiologic and Electrocardiographic Aspects of Myocardial Ischemia, Including Stress Testing. In Current Cardiovascular Topics (Vol. III), E. Donoso and R. Gorlin (eds.), Angina Pectoris. New York: Stratton, 1977, p. 28.Google Scholar
  124. 124.
    Sullivan, W., Vlodaver, Z., Tuna, N., Long, L., and Edwards, J.E. Correlation of electrocardiographic and pathologic findings in healed myocardial infarction. Am. J. Cardiol. 42: 724, 1978.PubMedGoogle Scholar
  125. 125.
    Bigger, J.T., Jr., Dresdale, R.J., Heissenbuttel, R.H., Weld, F.M., and Wit, A.C. Ventricular arrhythmias in ischemic heart disease: Mechanics, prevalence, significance and management. Prog. Cardiovasc. Dis. 19: 255, 1977.PubMedGoogle Scholar
  126. 126.
    Gang, E.S., Bigger, J.T., Jr., and Livelli, F.D., Jr. A model of chronic ischemic arrhythmias: The relation between electrically inducible ventricular tachycardia, ventricular fibrillation threshold and myocardial infarct size. Am. J. Cardiol. 50: 469, 1982.PubMedGoogle Scholar
  127. 127.
    Califf, R.M., Burks,J.M., Behar, V.S., Margolis, J.R., and Wagner, G.S. Relationship among ventricular arrhythmias, coronary artery disease, and angiographic and electrocardiographic indicators of myocardial fibrosis. Circulation 57: 725, 1978.PubMedGoogle Scholar
  128. 128.
    Rotman, M., Wagner, A.S., and Wallace, A.G. Bradyarrhythmias in acute myocardial infarction. Circulation 45: 703, 1972.PubMedGoogle Scholar
  129. 129.
    Liberthson, R.R., Salisbury, K.W., Hutter, A.M., Jr., and DeSanctis, R.W. Atrial tachyarrhythmias in acute myocardial infarction. Am. J. Med. 60: 956, 1976.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1985

Authors and Affiliations

  • Peter F. Cohn
  • Pantel S. Vokonas

There are no affiliations available

Personalised recommendations