Skip to main content

Part of the book series: Developments in Oncology ((DION,volume 21))

  • 67 Accesses

Abstract

The characterization of the immune response to tumours is a scientific development in oncology that has run an extremely uncertain course over approximately the last 30 years. The basic concept and potential of the immune system to respond to tumours has been appreciated for some time, but it is only recently that relatively solid scientific information has been established about the role of the immune system in the control of tumours. It is now accepted, although poorly understood, that as well as being directly tumouricidal the immune system may be anergic in the tumour-bearing host. This lack of immune reactivity may actually allow the initiation, growth, and spread of a tumour and also account for the increased susceptibility to infection that cancer patients experience. In addition, once established, the tumour cells and their products may exert a local or systemic depressive effect upon the immune system that could produce a further reduction in immune responsiveness to the tumour and to unrelated antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P. The functions of the macrophage in malignant disease. Annu Rev Med 27: 207–224, 1976.

    PubMed  CAS  Google Scholar 

  2. Keller R. Characteristics of cytotoxic macrophages as natural effectors of resistance to cancer. Clinics Immunol Allergy 3: 523–537, 1983.

    CAS  Google Scholar 

  3. Rhodes J. Resistance of tumour cells to macrophages: A short review. Cancer Immunol Immunother 7: 211–215, 1980.

    Google Scholar 

  4. Sokol RJ, Hudson G. Disordered function of mononuclear phagocytes in malignant disease. J. Clin Pathol 36: 316–323, 1983.

    PubMed  CAS  Google Scholar 

  5. Levy MH, Wheelock EF. The role of macrophages in defense against neoplastic disease. Adv Cancer Res 20: 131–163, 1974.

    PubMed  CAS  Google Scholar 

  6. Nelson DS (ed.). Immunobiology of the macrophage. New York: Academic Press, 1976.

    Google Scholar 

  7. Bellanti JA, Dayton DH (eds.). The phagocytic cell in hose resistance. New York: Raven Press, 1975.

    Google Scholar 

  8. Fink MA (ed.). The macrophage in neoplasia. New York: Academic Press, 1976.

    Google Scholar 

  9. van Furth R (ed.). Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell Scientific Publications, 1975.

    Google Scholar 

  10. van Furth R (ed.). Mononuclear phagocytes—Functional aspects. The Hague: Martinus Nijhoff, 1980.

    Google Scholar 

  11. James K, McBride B, Stuart A (eds.). The macrophage and cancer. Edinburgh: University of Edinburgh Medical School, 1977.

    Google Scholar 

  12. Braunsteiner H, Schmalzl F. Cytochemistry of monocytes and macrophages. In van Fruth R (ed.), Mononuclear phagocytes. Oxford: Blackwell, 1970, pp. 62–81.

    Google Scholar 

  13. Klockars M, Osserman EF. Localisation of lysozyme in normal rat tissues by an immunoperoxidase method. J Histochem Cytochem 22: 139–146, 1974.

    PubMed  CAS  Google Scholar 

  14. McClelland DBL, van Furth R. In vitro synthesis of lysozyme by human and mouse tissues and leukocytes. Immunology 28: 1099–1114, 1975.

    PubMed  CAS  Google Scholar 

  15. Bainton DF. Changes in peroxidase distribution within organelles of blood monocytes and peritoneal macrophages after surface adherence in vitro and in vivo. In van Furth R (ed.), Mononuclear phagocytes, functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 61–86.

    Google Scholar 

  16. van Furth R. Cells of the mononuclear phagocyte system—Nomenclature in terms of sites and conditions. In van Furth R (ed.), Mononuclear phagocytes, functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1–40.

    Google Scholar 

  17. Unanue ER. The regulatory role of macrophages in antigen stimulation. Adv Immunol 15: 95–165, 1972.

    PubMed  CAS  Google Scholar 

  18. Pierce CW, Kapp JA. The role of macrophages in antibody responses in vitro. In Nelson DS (ed.), Immunobiology of the macrophage. New York: Academic Press, 1976, pp. 1–33.

    Google Scholar 

  19. Daems WTh, Wisse E, Brederoo P. Emeis JJ. Peroxidatic activity in monocytes and macrophages. In van Furth R (ed.), Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell Scientific Publications, 1975, pp. 57–77.

    Google Scholar 

  20. Unanue ER. The regulation of lymphocyte function by macrophages. Immunol Rev 40: 227–255, 1978.

    PubMed  CAS  Google Scholar 

  21. Erb P, Feldmann M, Gisler R, Meier B, Stern A, Vogt P. Role of macrophages in the in vitro induction and regulation of antibody responses. In van Furth R (ed.), Mononuclear phagocytes, functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1857–1885.

    Google Scholar 

  22. Crofton RW, Diesselhoff-den Dulk MMC, van Furth R. The origin, kinetics and characteristics of the Kupffer cells in the normal steady state. J Exp Med 148: 1–17, 1978.

    PubMed  CAS  Google Scholar 

  23. Ward M, Ferguson A, Eastwood MA. Jejunal lysozyme activity and the Paneth cell in coeliac disease. Gut 20: 55–58, 1979.

    PubMed  CAS  Google Scholar 

  24. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature (Lond.) 282: 324–326, 1979.

    CAS  Google Scholar 

  25. Gassmann AE, van Furth R. The effect of azathioprine (Imuran) on the kinetics of monocytes and macrophages during normal steady state and the acute inflammatory reaction. Blood 46: 51–64, 1975.

    PubMed  CAS  Google Scholar 

  26. Nichols BA, Bainton DF. Ultrastructure and cyto-chemistry of mononuclear phagocytes. In van Furth R (ed.), Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell Scientific Publications, 1975, pp. 17–55.

    Google Scholar 

  27. Stingl G. Role of epidermal Langerhans cells in the immune response. Recent Adv Immunol 3: 1–7, 1983.

    Google Scholar 

  28. Kirchner H. Suppressor cells of immune reactivity in malignancy. Europ J Cancer 14: 453–459, 1978.

    CAS  Google Scholar 

  29. Rice L, Laughter AH, Twomey JJ. Three suppressor systems in human blood that modulate lympho- proliferation. J Immunol 122: 991–996, 1979.

    PubMed  CAS  Google Scholar 

  30. Goodwin JS, Messner RP, Peake GT. Prostaglandin suppression of mitogen-stimulated lymphocytes in vitro. J Clin Invest 62: 753–760, 1978.

    PubMed  CAS  Google Scholar 

  31. Goodwin JS, Bankhurst AD, Messner RP. Suppression of human T-cell mitogenesis by prostaglandin. J Exp Med 146: 1719–1734, 1977.

    PubMed  CAS  Google Scholar 

  32. Bandeira A, Pobor S, Pettersson S, Coutinhos A. Differential macrophage requirements for T helper cell and T helper-cell induced B lymphocyte proliferation. J Exp Med 157: 312–323, 1983.

    PubMed  CAS  Google Scholar 

  33. Wilkinson PC. Cell-membrane activation of macrophage function. Recent Results in Cancer Res 56: 41–48, 1976.

    Google Scholar 

  34. Silverstein SC, Loike JD. Phagocytosis. In van Furth R (ed.), Mononuclear phagocytes, functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 895–917.

    Google Scholar 

  35. Kohler PF. Human complement system. In Samter M (ed.), Immunological diseases, 3rd edn. Boston: Little Brown, 1978, pp. 224–280.

    Google Scholar 

  36. Brade V, Bentley C. Synthesis and release of complement components by macrophages. In van Furth R (ed.), Mononuclear phagocytes—Functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1385–1417.

    Google Scholar 

  37. Temple TR, Synderman R, Jordan HV, Mergenhagen SE. Factors from saliva and oral bacteria, chemotactic for polymorphonuclear leukocytes: Their possible role in gingival inflammation. J Periodont 41: 71–80, 1970.

    Google Scholar 

  38. Schiffmann E, Corcoran BA, Wahl SM. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci 72: 1059–1062, 1975.

    PubMed  CAS  Google Scholar 

  39. Ward PA, Hill JH. C5 chemotactic fragments produced by an enzyme in lysosomal granules of neutrophils. J Immunol 104: 535–543, 1970.

    PubMed  CAS  Google Scholar 

  40. Altman LC, Synderman R, Oppenheim JJ, Mergenhagen SE. A human mononuclear leukocyte chemotactic factor: Characterization, specificity and kinetics of production by homologous leukocytes. J Immunol 110: 801–810, 1973.

    PubMed  CAS  Google Scholar 

  41. Mackler BF, Altman LC, Rosenstreich DL, Oppenheim JJ. Induction of lymphokine production by EAC and of histogenesis by soluble mitogens during human B-cell activation. Nature (Lond.) 249: 834–837, 1974.

    CAS  Google Scholar 

  42. Wahl SM, Altman LC, Oppenheim JJ, Morgenhagen SE. In vitro studies of a chemotactic lymphokine in the guinea pig. Inter Arch Allergy Appl Immunol 46: 768–784, 1974.

    Google Scholar 

  43. Wahl SM, Iverson GM, Oppenheim JJ. Induction of guinea pig B-cell lymphokine synthesis by mitogenic and nonmitogenic signals to Fc, Ig and C3 receptors. J Exp Med 140: 1631–1645, 1974.

    PubMed  CAS  Google Scholar 

  44. Wahl SM, Wilton JM, Rosenstreich DL, Oppenheim JJ. The role of macrophages in the production of lymphokines by T and B lymphocytes. J Immunol 114: 1296–1301, 1975.

    PubMed  CAS  Google Scholar 

  45. Steinman RM, Brodier SE, Cohn ZA. Membrane flow during pinocytosis. A stereologic analysis. J Cell Biol 68: 665–687, 1976.

    PubMed  CAS  Google Scholar 

  46. Machoney EM, Hamill AL, Scott WA, Cohn ZA. Response of endocytosis to altered fatty acyl compositions of macrophage phospholipids. Proc Natl Acad Sci 74: 4895–4899, 1977.

    Google Scholar 

  47. Unkeless JC, Eisen HN. Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages. J Exp Med 142: 1520–1533, 1975.

    PubMed  CAS  Google Scholar 

  48. Unkeless JC. The presence of two Fc receptors on mouse macrophages. Evidence from a variant cell line and differential trypsin sensitivity. J Exp Med 145: 931–947, 1977.

    PubMed  CAS  Google Scholar 

  49. Heusser CH, Anderson CL, Grey HM. Receptors for IgG: Subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line. J Exp Med 145: 1316–1327, 1977.

    PubMed  CAS  Google Scholar 

  50. Coupland K, Leslie RGQ. The expression of Fc receptors on guinea-pig peritoneal macrophages and neutrophils. Immunol 48: 647–656, 1983.

    CAS  Google Scholar 

  51. Michl J, Unkeless JC, Silverstein SC. Modulation of macrophage plasma membrane receptors for IgG and complement. In van Furth R (ed.), Mononuclear phagocytes—Functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 921–937.

    Google Scholar 

  52. Griffin FM Jr, Bianco C, Silverstein SC. Characterization of the macrophage receptor for complement and demonstration of its functional independence from the receptor for the Fc portion of immunoglobulin G. J Exp Med 141: 1269–1277, 1975.

    PubMed  Google Scholar 

  53. Griffin FM Jr, Silverstein SC. Segmental response of the macrophage plasma membrane to a phagocytic stimulus. J Exp Med 139: 323–336, 1974.

    PubMed  CAS  Google Scholar 

  54. Griffin FM Jr, Griffin JA, Leider JE, Silverstein SC. Studies on the mechanisms of phagocytosis. I. Requirements for circumferential attachment of particle bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 142: 1263–1282, 1975.

    PubMed  Google Scholar 

  55. Griffin FM Jr, Griffin JA, Silverstein SC. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J Exp Med 144: 788–809, 1976.

    PubMed  Google Scholar 

  56. Hartwig JH. Davies WA, Stossel TP. Evidence for contractile protein translocation in macrophage spreading, phagocytosis and phagolysozome formation. J Cell Biol 75: 956–967, 1977.

    PubMed  CAS  Google Scholar 

  57. Choate JJ, Mosher DF. Fibronectin concentration in plasma of patients with breast cancer, colon cancer and acute leukaemia. Cancer 51: 1142–1147, 1983.

    PubMed  CAS  Google Scholar 

  58. Klebanoff SJ. Oxygen intermediates and the microbicidal event. In van Furth R (ed.), Mononuclear phago-cytes—Functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1105–1137.

    Google Scholar 

  59. Johnston RB Jr, Chadwick DA, Pabst MJ. Release of superoxide anion by macrophages: Effect of in vivo or in vitro priming. In van Furth R. (ed.), Mononuclear phagocytes, functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1143–1158.

    Google Scholar 

  60. Daems WTh, Poelmann RE, Brederoo P. Peroxidatic activity in resident peritoneal macrophages and exudate monocytes of the guinea pig after ingestion of latex particles. J Histochem Cytochem 21: 93–95, 1973.

    PubMed  CAS  Google Scholar 

  61. Gordon S, Todd J, Cohn ZA. In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. J Exp Med 139: 1228–1248, 1974.

    Google Scholar 

  62. Zeya HI, Spitznagel JK. Arginine-rich proteins of polymorphonuclear leukocyte lysosomes. Antimicrobial specificity and biochemical heterogeneity. J Exp Med 127: 927–941, 1968.

    PubMed  CAS  Google Scholar 

  63. Rees RC, Underwood JCE. Tumour immunology. In Hancock BW (ed.), Assessment of tumour response. The Hague: Martinus Nijhoff, 1982, pp. 181–210.

    Google Scholar 

  64. Manifold IH, Triger DR, Underwood JCE. Kupffer-cell depletion in chronic liver disease: Implications for hepatic carcinogenesis. Lancet 2: 431–433, 1983.

    PubMed  CAS  Google Scholar 

  65. Rebuck JW, Monto RW, Monaghan EA, Riddle JM. Potentialities of the lymphocyte, with an. additional reference to its dysfunction in Hodgkin’s disease. Ann N Y Acad Sci 73: 8–38, 1958.

    PubMed  CAS  Google Scholar 

  66. Sokol RJ, Durrant TE, Lambourne CA, Hudson G. Scanning electron microscopy of exudate macrophages in malignant lymphoma. Scand J Haematol 22: 129–140, 1979.

    PubMed  CAS  Google Scholar 

  67. Dent RG, Cole P. “In vitro” monocyte maturation in squamous carcinoma of the lung. Br J Cancer 43: 486–495, 1981.

    PubMed  CAS  Google Scholar 

  68. Currie GA, Hedley DW. Monocytes and macrophages in malignant melanoma. I. Peripheral blood macrophage precursors. Br J Cancer 36: 1–6. 1977.

    PubMed  CAS  Google Scholar 

  69. Krishnan EC, Menon CD, Krishnan L, Jewell WR. Deficiency in maturation process of macrophages in human cancer. J Natl Cancer Inst 65: 273–276, 1980.

    PubMed  CAS  Google Scholar 

  70. Unger SW, Bernhard MI, Pace RC, Wanebo HJ. Monocyte dysfunction in human cancer. Cancer 51: 669–674, 1983.

    PubMed  CAS  Google Scholar 

  71. Krishnan EC, Mebust WK, Weigel JW, Jewell WR. Maturation of monocytes in patients with renal cell carcinoma. Invest Urol 19: 4–7, 1981.

    PubMed  CAS  Google Scholar 

  72. Palmer BV, Currie G. Monocyte maturation and breast cancer. Clin Oncol 6: 377, 1980.

    Google Scholar 

  73. Hedley DW, Nylholm RE, Currie GA. Monocytes and macrophages in malignant melanoma. IV. Effects of C. parvum on monocyte function. Br J Cancer 39: 558–565, 1979.

    Google Scholar 

  74. Taylor SA, Currie GA. Monocyte maturation and prognosis in primary breast cancer. Br Med J i: 1050–1051, 1979.

    Google Scholar 

  75. Dent RG, Cole P. In vitro monocyte maturation as a prediction of survival in squamous cell carcinoma of the lung. Thorax 36: 446–451, 1981.

    Google Scholar 

  76. Braun DP, Harris JE. Relationship of leukocyte numbers, immunoregulatory cell function, and phyto- haemagglutinin responsiveness in cancer patients. J Natl Cancer Inst 67: 809–814, 1981.

    PubMed  CAS  Google Scholar 

  77. Wood GW, Neff JE, Stephens R. Relationship between monocytosis and T-lymphocyte function in human cancer. J Natl Cancer Inst 63: 587–592, 1979.

    PubMed  CAS  Google Scholar 

  78. Popper H, Sternberg SS, Osier BL, Osier M. The carcinogenic effect of Aramite in rats. A study of hepatic nodules. Cancer 13: 1035–1046, 1960.

    PubMed  CAS  Google Scholar 

  79. Flavell DJ. Liver-fluke infection as an aetiological factor in bile-duct carcinoma of man. Trans R Soc Trop Med Hyg 75: 814–824, 1981.

    PubMed  CAS  Google Scholar 

  80. Hou PC. The relationship between primary carcinoma of the liver and infestation with Clonorchis sinensis. J Path Bacterid 72: 239–246, 1956.

    CAS  Google Scholar 

  81. Swinson CM, Slavin G, Coles EC, Booth CC. Coeliac disease and malignancy. Lancet i: 111 - 115, 1983.

    Google Scholar 

  82. Underwood JCE. Lymphoreticular infiltration in human tumours: Prognostic and biological implications: A review. Br J Cancer 30: 538–548, 1974.

    PubMed  CAS  Google Scholar 

  83. Alexander P, Eccles SA, Ganci CL. The significance of macrophages in human and experimental tumors. Ann N Y Acad Sci 276: 124–133, 1976.

    PubMed  CAS  Google Scholar 

  84. Lauder I, Aherne W, Stewart J, Sainsbury R. Macrophage infiltration of breast tumors: A prospective study. J Clin Pathol 30: 563–568, 1977.

    PubMed  CAS  Google Scholar 

  85. Skinner JM, Jarvis LR, Whitehead R. The cellular response to human colonic neoplasms: Macrophage numbers. J Pathol 139: 97–103, 1983.

    PubMed  CAS  Google Scholar 

  86. Talmadge JE, Key M, Fidler IJ. Macrophage content of metastatic and nonmetastatic rodent neoplasms. J Immunol 126: 2245–2248, 1981.

    PubMed  CAS  Google Scholar 

  87. Gauci CL. The significance of the macrophage content of human tumours. Recent Results Cancer Res 56: 122–130, 1976.

    PubMed  Google Scholar 

  88. Jerrells TR, Dean JH, Richardson GL, McCoy JL, Herberman RB. Role of suppressor cell in depression of in vitro lymphoproliferative responses of lung cancer and breast cancer patients. J Natl Cancer Inst 61: 1001–1009, 1978.

    PubMed  CAS  Google Scholar 

  89. Schulof RS, Lee BJ, Lacher MJ, Straus DJ, Clarkson BD, Good RA, Gupta S. Concanavalin A-induced suppressor cell activity in Hodgkin’s disease. Clin Immunol Immunopathol 16: 454–462, 1980.

    PubMed  CAS  Google Scholar 

  90. Zembala M, Mytar B, Popiela T, Asherson G. Depressed in vitro peripheral blood lymphocyte response to mitogens in cancer patients: The role of suppressor cells. Int J Cancer 19: 605–613, 1977.

    PubMed  CAS  Google Scholar 

  91. Berlinger NT, Hilal EY, Oettgen HF, Good RA. Deficient cell-mediated immunity in head and neck cancer patients secondary to autologous suppressive immune cells. Laryngoscope 88: 470–483, 1978.

    PubMed  CAS  Google Scholar 

  92. Hillinger SM, Herzig GP. Impaired cell-mediated immunity in Hodgkin’s disease mediated by suppressor lymphocytes and monocytes. J Clin Invest 61: 1620–1627, 1978.

    PubMed  CAS  Google Scholar 

  93. Laughter AH, Twomey JJ. Suppression of lympho-proliferation by high concentrations of normal human mononuclear leukocytes. J Immunol 119: 173–179, 1977.

    PubMed  CAS  Google Scholar 

  94. Twomey JJ, Laughter AH, Farrow S, Douglas CD. Hodgkin’s disease. An immunodepleting and immuno-suppressive disorder. J Clin Invest 56: 467–475, 1975.

    PubMed  CAS  Google Scholar 

  95. Goodwin JS, Messner RP, Bankhurst AD, Peake GT, Saiki JH, Williams RC Jr. Prostaglandin-producing suppressor cells in Hodgkin’s disease. New Eng J Med 297: 963–968, 1977.

    PubMed  CAS  Google Scholar 

  96. Broder S, Muul L, Waldmann TA. Suppressor cells in neoplastic disease. J Natl Cancer Inst 61: 5–11, 1978.

    PubMed  CAS  Google Scholar 

  97. Holm G, Bjorkholm M, Johansson B, Mellstedt H, Lindemalm C. Monocyte function in Hodgkin’s disease. Clin Exp Immunol 47: 162–168, 1982.

    PubMed  CAS  Google Scholar 

  98. Sagone AL Jr, Kamps S, Campbell R, King GW. Lack of correlation of activated monocytes with lymphocyte function in patients with lymphoma. J Reticuloendothelial Soc 21: 377–383, 1977.

    Google Scholar 

  99. Zembala M, Mytar B, Ruggiero I, Uracz W, Popiela T, Czupryna A: Suppressor cells and survival of patients with gastric cancer. J Natl Cancer Inst 70: 222–228, 1983.

    Google Scholar 

  100. Han T, Winnicki MS. Indomethacin-mediated enhancement of lymphocyte response to mitogens. N Y State J Med 80: 1070–1075, 1980.

    PubMed  CAS  Google Scholar 

  101. De Shazo RD. Indomethacin-responsive mononuclear cell dysfunction in Hodgkin’s disease. Clin Immunol Immunopathol 17: 66–75, 1980.

    Google Scholar 

  102. Tilden AB, Balch CM. Indomethacin enhancement of immunocompetence in melanoma patients. Surgery 90: 77–84, 1981.

    PubMed  CAS  Google Scholar 

  103. Han MD, Takita H. Depression of T-lymphocyte response by non-T suppressor cells in lung cancer patients. Cancer 44: 2090–2098, 1979.

    PubMed  CAS  Google Scholar 

  104. Den Otter W, Evans R, Alexander P. Differentiation of immunologically specific cytotoxic macrophages into two types on the basis of radiosensitivity. Transplant 18: 421–428, 1974.

    Google Scholar 

  105. Quan PC, Burtin P. Demonstration of nonspecific suppressor cells in the peripheral lymphocytes of cancer patients. Cancer Res 38: 288–296, 1978.

    PubMed  CAS  Google Scholar 

  106. Broder S, Humphrey R, Durm M, Blackman M, Mead B, Goldman C, Strober W, Waldman T. Impaired synthesis of polyclonal (non-paraprotein) immunoglobulins by circulating lymphocytes from patients with multiple myeloma. New Engl J Med 293: 887–892, 1975.

    PubMed  CAS  Google Scholar 

  107. Eccles SA, Alexander P. Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature 250: 667–669, 1974.

    PubMed  CAS  Google Scholar 

  108. North RJ, Kirstein DP, Tuttle RL. Subversion of host defense mechanisms by murine tumours. I. A circulating factor that suppresses macrophage-mediated resistance to infection. J Exp Med 143: 559–573, 1976.

    PubMed  CAS  Google Scholar 

  109. North RJ, Kirstein DP, Tuttle RL. Subversion of host defense mechanisms by murine tumours. II. Counter-influence of concomitant antitumour immunity. J Exp Med 143: 574–584, 1976.

    PubMed  CAS  Google Scholar 

  110. Spitalny GL, North RJ. Subversion of host defense mechanisms by malignant tumours: An established tumour as a privileged site for bacterial growth. J Exp Med 145: 1264–1277, 1977.

    PubMed  CAS  Google Scholar 

  111. Otu AA, Russell RJ, Wilkinson PC, White RG. Alterations of mononuclear phagocyte function induced by Lewis lung carcinoma in C57BL mice. Br J Cancer 36: 330–340, 1977.

    PubMed  CAS  Google Scholar 

  112. Stutman O, Lattime EC. Natural cytotoxic cells against tumours in mice. Clinics Immunol Allergy 3: 507–521, 1983.

    Google Scholar 

  113. de Vries JE, Mendelsohn J, Bont WS. Requirement for monocytes in the spontaneous cytotoxic effects of human lymphocytes against non-lymphoid target cells. Nature 283: 574–576, 1980.

    PubMed  Google Scholar 

  114. de Vries JE, Figdor CG, Spits H. Regulation of human NK activity against adherent tumour target cells by monocyte subpopulations, interleukin 1 and interferons. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 657–668.

    Google Scholar 

  115. Farrar WL, Johnson HM, Farrar JJ. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol 126: 1120–1125, 1981.

    PubMed  CAS  Google Scholar 

  116. Brunda MJ, Taramelli D, Holden HT, Varesio L. Suppression of murine natural killer cell activity by nor¬mal peritoneal macrophages. In Herberman RB (ed.), NK cell and other natural effector cells. New York: Academic Press, 1982, pp. 535–546.

    Google Scholar 

  117. Bordignon C, Allavena P, Introna M, Biondi A, Bottazzi, B, Mantovani A. Modulation of NK activity by human mononuclear phagocytes: Suppressive activity of broncho-alveolar macrophages. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 581–588.

    Google Scholar 

  118. Uchida A, Micksche M. Suppression of NK cell activity by adherent cells from malignant pleural effusions of cancer patients. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 589–594.

    Google Scholar 

  119. Boetcher DA, Leonard EJ. Abnormal monocyte chemotactic response in cancer patients. J Natl Cancer Inst 52: 1091–1099, 1974.

    PubMed  CAS  Google Scholar 

  120. Hausman MS, Brosman S, Synderman R, Mickey MJ, Fahey J. Defective monocyte function in patients with genito-urinary carcinoma. J Natl Cancer Inst 55: 1047–1054, 1975.

    PubMed  CAS  Google Scholar 

  121. Snyderman R, Pike MC, Meadows L, Hemstreet G, Wells S. Depression of monocyte chemotaxis by neoplasms. Clin Res 23: 297, 1975.

    Google Scholar 

  122. Rubin RH, Cosimi AB, Goetzl EJ. Defective human mononuclear leukocyte chemotaxis as an index of host resistance to malignant melanoma. Clin Immunol Immunopathol 6: 376–388, 1976.

    PubMed  CAS  Google Scholar 

  123. McVie JG, Logan EGM, Kay AB. Monocyte function in cancer patients. Eur J Cancer 13: 351–353, 1977.

    PubMed  CAS  Google Scholar 

  124. Seitz LE, Golitz LE, Weston WL, Aeling JE, Dustin RD. Defective monocyte chemotaxis in mycosis fungoides. Arch Dermatol 113: 1055–1057, 1977.

    PubMed  CAS  Google Scholar 

  125. Snyderman R, Seigler HF, Meadows L. Abnormalities of monocyte chemotaxis in patients with melanoma: Effects of immunotherapy and tumor removal. J Natl Cancer Inst 58: 37–41, 1977.

    PubMed  CAS  Google Scholar 

  126. Kjeldesberg CR, Pay GD. A qualitative and quantitative study of monocytes in patients with malignant solid tumours. Cancer 41: 2236–2241, 1978.

    Google Scholar 

  127. Snyderman R, Meadows L, Holder W, Wells S. Abnormal monocyte chemotaxis in patients with breast cancer: Evidence for a tumour-mediated effect. J Natl Cancer Inst 60: 737–740, 1978.

    PubMed  CAS  Google Scholar 

  128. Dammacco F, Miglietta A, Ventura MT, Bonomo L. Defective monocyte chemotactic responsiveness in patients with multiple myeloma and benign monoclonal gammapathy. Clin Exp Immunol 47: 481–486, 1982.

    PubMed  CAS  Google Scholar 

  129. Nielsen H, Bennedsen J, Larsen SO, Dombernowsky P, Viskum K. A quantitative and qualitative study of blood monocytes in patients with bronchogenic carcinoma. Cancer Immunol Immunother 13: 93–97, 1982.

    PubMed  CAS  Google Scholar 

  130. Snyderman R, Pike MC. Quantification of monocyte function in patients with cancer: Evidence for tumour-mediated dysfunction. In Hersh EM, Chirigos MA, Mastrangelo MJ (eds.), Augmenting agents in cancer therapy. New York: Raven Press, 1981. pp. 285–293.

    Google Scholar 

  131. Nielsen H, Bennedsen J, Dombernowsky P. Normalization of defective monocyte chemotaxis during chemotherapy in patients with small cell anaplastic carcinoma of the lung. Cancer Immunol Immunother 14: 13–15, 1982.

    PubMed  CAS  Google Scholar 

  132. Renoux G, Lemarie G, Legrand MF, Renoux M, Lavandier M. Pulmonary alveolar macrophage chemotaxis in malignant tumours of the lung. In Norman SJ, Sorkin E (eds.), Macrophages and natural killer cells: Regulation and function. New York: Plenum Press, 1982, pp. 361–367.

    Google Scholar 

  133. Normann SJ, Sorkin E. Cell specific defect in monocyte function during tumor growth. J Natl Cancer Inst 57: 135–140, 1976.

    Google Scholar 

  134. Alexander P. Entry of inflammatory cells into tumours and the suppression of chronic inflammation by tumors. In Weissermann G, Samuelsson B, Paoletti R (eds.), Advances in inflammation research. New York: Raven Press, 1979, pp. 197–204.

    Google Scholar 

  135. Samak P, Israel L, Edelstein R. Influence of tumour burden, tumour removal, immune stimulation, plasmapheresis on monocyte mobilisation in cancer patients. In Escobar MR, Friedman H (eds.), Advances in experimental medicine and biology: Macrophages and lymphocytes. New York: Plenum Press, 1980, pp. 411–423.

    Google Scholar 

  136. Israel L, Samak R. A modified skin window technique as a staging tool in solid tumours. Correlation between nonspecific monocyte mobilization “in vivo” and spread of disease. Am Assoc Cancer Res Proc 20: 49, 1979.

    Google Scholar 

  137. Bennett B, Old LJ, Boyse EA; The phagocytosis of tumour cells in vitro. Transplant 2: 183–202, 1964.

    CAS  Google Scholar 

  138. Kuntz BME, Kuntz RM, Albert ED. Phagocytosis of monocytes in cancer patients. Zeit Krebsforchung Klin Onk 91: 11–17, 1978.

    CAS  Google Scholar 

  139. Ruco LP, Procopio A, Uccini S, Baroni CD. Increased monocyte phagocytosis in cancer patients. Eur J Cancer 16: 1315–1320, 1980.

    PubMed  CAS  Google Scholar 

  140. Urbanitz D, Fechner I. Gross R. Reduced monocyte phagocytosis in patients with advanced Hodgkin’s disease and lymphosarcoma. Klin Wochenschr 53: 437–440, 1975.

    PubMed  CAS  Google Scholar 

  141. Estevez ME, Sen L, Bachmann AE, Paulovsky A. Defective function of peripheral blood monocytes in patients with Hodgkin’s disease and non-Hodgkin’s lymphomas. Cancer 46: 299–302, 1980.

    PubMed  CAS  Google Scholar 

  142. Hedley DW, Currie GA. Monocytes and macrophages in malignant melanoma. III. Reduction of nitroblue tetrazolium by peripheral blood monocytes. Br J Cancer 37: 747–752, 1978.

    PubMed  CAS  Google Scholar 

  143. Kitahara M, Eyre H, Hill HR. Monocyte functional and metabolic activity in malignant and inflammatory diseases. J Lab Clin Med 93: 472–479, 1979.

    PubMed  CAS  Google Scholar 

  144. Gill PG, Waller CA. Quantitative aspects of human monocyte function and its measurement in cancer patients. In James K, McBride B, Stuart A (eds.), The macrophage and cancer. Edinburgh: University of Edinburgh Medical School, 1977, pp. 375–385.

    Google Scholar 

  145. Kleinerman ES, Howser D, Young RC et al. Defective monocyte killing in patients with malignancies and restoration of function during chemotherapy. Lancet ii: 1102–1105, 1980.

    Google Scholar 

  146. Cline MJ. Defective mononuclear phagocyte function in patients with myelomonocytic leukaemia and in some patients with lymphoma. J Clin Invest 52, 2185–2190, 1973.

    PubMed  CAS  Google Scholar 

  147. Rhodes J. Altered expression of human monocyte Fc receptors in malignant disease. Nature 265: 253–255, 1977.

    PubMed  CAS  Google Scholar 

  148. Rhodes J, Plowman P, Bishop M, Lipscomb D. Human macrophage function in cancer: Systemic and local changes detected by an assay for Fc receptor expression. J Natl Cancer Inst 66: 423–429, 1981.

    PubMed  CAS  Google Scholar 

  149. Meltzer MS, Stevenson MM. Macrophage function in tumour bearing mice: Dissociation of phagocytic and chemotactic responsiveness. Cellular Immunol 35: 99–111, 1978.

    CAS  Google Scholar 

  150. Steigbigel RT, Lambert LH, Remington JS. Polymorphonuclear leukocyte, monocyte and macrophage bactericidal function in patients with Hodgkin’s disease. J Lab Clin Med 88: 54–62, 1976.

    PubMed  CAS  Google Scholar 

  151. Scheinberg MA, Masuda A, Maluf JA, Mendes NF. Monocyte function in patients with solid neoplasms during immunotherapy with Corynebacterium parvum. Cancer 41: 1761–1764, 1978.

    PubMed  CAS  Google Scholar 

  152. Saito H, Tomioka H. Suppressive factor of tumour origin against macrophage phagocytosis of Staphylococcus aureus. Br J Cancer 41: 259–267, 1980.

    PubMed  CAS  Google Scholar 

  153. Piessens WF. Increased binding of tumour cells by macrophages activated in vitro with lymphocyte mediators. Cell Immunol 35: 303–317, 1978.

    PubMed  CAS  Google Scholar 

  154. Chambers VC, Weiser RS. The ultrastructure of target cells and immune macrophages during their interaction in vitro. Cancer Res 29: 301–317, 1969.

    PubMed  CAS  Google Scholar 

  155. Evans R. Macrophage cytotoxicity. In van Furth R. (ed.), Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell, 1975, pp. 827–843.

    Google Scholar 

  156. Adams DO, Nathan CF. Molecular mechanisms in tumour-cell killing by activated macrophages. Immunol Today 4: 166–170, 1983.

    CAS  Google Scholar 

  157. Nathan CF, Cohn ZA. Role of oxygen-dependent mechanisms in antibody induced lysis of tumour cells by activated macrophages. J Exp Med 152: 198–208, 1980.

    PubMed  CAS  Google Scholar 

  158. Adams DO. Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J Immunol 124: 286–292, 1980.

    PubMed  CAS  Google Scholar 

  159. Nathan CF, Brukner LH, Silverstein SC, Cohn ZA. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med 149: 84–99, 1979.

    Google Scholar 

  160. Cohen MS, Taffet SM, Adams DO. The relationship between competence for secretion of H202 and completion of tumour cytotoxicity by BCG-elicited murine macrophages. J Immunol 128: 1781–1785, 1982.

    PubMed  CAS  Google Scholar 

  161. Nathan CF, Arrick BA, Murray HW, DeSantis NM, Cohn ZA. Tumour cell anti-oxidant defenses. Inhibition of glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med 153: 766–782, 1981.

    PubMed  CAS  Google Scholar 

  162. Nathan CF, Klebanoff SJ. Augmentation of spontaneous macrophage-mediated cytotoxicity by eosinophil peroxidase. J Exp Med 155: 1291–1308, 1982.

    PubMed  CAS  Google Scholar 

  163. Adams DO, Kao K-J, Farb R, Pizzo SV. Effector mechanisms of cytolytically activated macrophages. II. Secretion of cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol 124: 293–300, 1980.

    PubMed  CAS  Google Scholar 

  164. Ruff MR, Gifford GE. Purification and physicochemical characterization of rabbit tumour necrosis factor. J Immunol 125: 1671–1677, 1980.

    PubMed  CAS  Google Scholar 

  165. Currie GA. Activated macrophages kill tumour cells by releasing arginase. Nature (Lond.) 273: 758–759, 1978.

    CAS  Google Scholar 

  166. Fishman M. Functional heterogeneity among peritoneal macrophages. III. No evidence for the role of arginase in the inhibition of tumor cell growth by supernantants from macrophages or macrophage sub- population culture. Cell Immunol 55: 174–184, 1980.

    PubMed  CAS  Google Scholar 

  167. Farram E, Nelson DS. Mechanism of action of mouse macrophages as antitumour effector cells: Role of arginase. Cell Immunol 55: 283–293, 1980.

    PubMed  CAS  Google Scholar 

  168. Baggiolini M, Schnyder J. Synthesis and release of lytic enzymes by macrophages in chronic inflammation. Adv Exp Med Biol 155: 305–312, 1982.

    PubMed  CAS  Google Scholar 

  169. Hibbs JB Jr, Chapman HA Jr, Weinberg JB. Regulation of macrophage non-specific tumouricidal capability. In van Furth R (ed.), Mononuclear phagocytes, functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1681–1724.

    Google Scholar 

  170. Keller R. Cytostatic killing of syngeneic tumour cells by activated non-immune macrophages. In van Furth R (ed.), Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell, 1975, pp. 857–868.

    Google Scholar 

  171. Keller R. Distinctive characteristics of host tumor resistance in a rat fibrosarcoma model system. In van Furth R (ed.), Mononuclear phagocytes: Functional aspects. The Hague: Martinus Nijhoff, 1980, pp. 1725–1740.

    Google Scholar 

  172. Keller R. Regulatory capacities of mononuclear phagocytes with particular reference to natural immunity against tumours. In Herberman RB (ed.), Natural cell-mediated immunity against tumours. New York: Academic Press, 1980, pp. 1219–1269.

    Google Scholar 

  173. Somers SD, Adams DO. Augmented binding of tumour cells by activated murine macrophages and its relevance to tumour cytotoxicity. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press, 1982, pp. 1003–1009.

    Google Scholar 

  174. Johnson WJ, Weiel JE, Adams DO. The relationship between secretion of a novel cytolytic protease and macrophage-mediated tumour cytotoxicity. In Herberman RB (ed.), NK cells and other natural effector cells. New York: Academic Press: 1982, pp. 949–954.

    Google Scholar 

  175. Cameron DJ, Churchill WH. Cytotoxicity of human macrophages for tumour cells—Enhancement by human lymphocyte mediators. J Clin Invest 63: 977–984, 1979.

    PubMed  CAS  Google Scholar 

  176. Nathan CF, Murray HW, Wiebe E, Rubin BY. Identification of interferon - 7 as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158: 670–689, 1983.

    PubMed  CAS  Google Scholar 

  177. Perussia B, Dayton ET, Lazarus R, Fanning V, Trinchieri G. Immune interferon induces the receptor for monomeric IgG 1 on human monocytic and myeloid cells. J Exp Med 158: 1092–1113, 1983.

    PubMed  CAS  Google Scholar 

  178. Schultz RM, Chirigos MA, Heine UI. Functional and morphologic characteristics of interferon-treated macrophages. Cell Immunol 35: 84–91, 1978.

    PubMed  CAS  Google Scholar 

  179. Boraschi D, Ghezzi P, Pasqualetto E, Salmona M, Nencioni L, Soldateschi D, Villa L, Tagliabue A. Interferon decreases production of hydrogen peroxide by macrophages; correlation with reduction of suppressive capacity and of antimicrobial activity. Immunology 50: 359–368, 1983.

    PubMed  CAS  Google Scholar 

  180. Le Marbre P, Rinehart JJ, Kay NE, Vasella R, Jacob HS. Lysozyme enhances monocyte-mediated tumoricidal activity: A potential amplifying mechanism of tumour killing. Blood 58: 994–999, 1981.

    Google Scholar 

  181. Schlager SI, Meltzer MS. Role of macrophage lipids in regulating tumoricidal activity. II. Internal genetic and external physiologic regulatory factors controlling macrophage tumor cytotoxicity also control characteristic lipid changes associated with tumoricidal cells. Cell Immunol 80: 10–19, 1983.

    PubMed  CAS  Google Scholar 

  182. Horwitz DA, Kight N, Temple A, Allison AC. Spontaneous and induced cytotoxic properties of human adherent mononuclear cells: Killing of non-sensitized and antibody-coated non-erythroid cells. Immunol 36: 221–228, 1979.

    Google Scholar 

  183. De Mulder PHM, De Pauw BE, Pennings A, Wagener DJTh, Haanen C: Increased antibody-dependent cytotoxicity mediated by purified monocytes in Hodgkin’s disease. Clin Immunol Immunopathol 26: 406–414, 1983.

    PubMed  Google Scholar 

  184. Kohl S. Pickering LK, Sullivan MP, Walters DL. Impaired monocyte-macrophage cytotoxicity in patients with Hodgkin’s disease. Clin Immunol Immunopathol 15: 577–585, 1980.

    PubMed  CAS  Google Scholar 

  185. Remington JS, Krahenbuhl JJ, Hibb JB Jr: A role for the macrophage in resistance to tumour development and tumour destruction. In van Furth R (ed.), Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell, 1975, pp. 869–891.

    Google Scholar 

  186. Den Otter W, Evans R, Alexander P. Cytotoxicity of murine peritoneal macrophages in tumour allograft immunity. Transplant 14: 220–226, 1972.

    Google Scholar 

  187. Evans R, Alexander P. Co-operation of immune lymphoid cells with macrophages in tumour immunity. Nature 228: 620–622, 1970.

    PubMed  CAS  Google Scholar 

  188. Evans R, Alexander P. Role of macrophages in tumour immunity. I. Co-operation between macrophages and lymphoid cells in syngeneic tumour immunity. Immunol 23: 615–626, 1972.

    Google Scholar 

  189. Evans R, Alexander P. Rendering macrophages specifically cytotoxic by a factor released from immune lymphoid cells. Transplant 12: 227–229, 1971.

    CAS  Google Scholar 

  190. Fidler IJ. Activation of mouse macrophages by syngeneic, allogeneic, or xenogeneic lymphocyte super- natants. J Natl Cancer Inst 55: 1159–1163, 1975.

    PubMed  CAS  Google Scholar 

  191. Lohmann-Matthes M-L, Fischer H. Macrophage-mediated cytotoxic induction by a specific T-cell factor. In van Furth R. (ed.), Mononuclear phagocytes in immunity, infection and pathology. Oxford: Blackwell, 1975, pp. 845–854.

    Google Scholar 

  192. Cameron DJ, O’Brien P. Cytotoxicity of cancer patients’ macrophages for tumour cells. Cancer 50: 498–502, 1982.

    PubMed  CAS  Google Scholar 

  193. Cameron DJ, Collawn SS. Cytotoxicity of cancer patients’ macrophages for tumour cells: Purification and characterization of plasma inhibitory factors obtained from colon cancer patients. Intern J Immunophar- macol 5: 55–66, 1983.

    CAS  Google Scholar 

  194. Unsgaard G, Eggen BM, Lamvik J. Depression of monocyte mediated cytotoxicity by renal carcinoma and restoration through therapy. J Surg Oncol 22: 51–55, 1983.

    PubMed  CAS  Google Scholar 

  195. King GW, Yanes B, Hurtubise PE, Balcerzak SP, Lobuglio AF. Immune function of successfully treated lymphoma patients. J Clin Invest 57: 1451–1460, 1976.

    PubMed  CAS  Google Scholar 

  196. Keller R: Tumor-promoting diterpene esters induce macrophage activation, but prevent activation for tumoricidal activity of macrophage and NK cells. In Herberman RB (ed.), NK cells and other natural effec¬tor cells. New York: Academic Press, 1982, pp. 601–606.

    Google Scholar 

  197. Gabizon A, Lelbovich SJ, Goldman R. Contrasting effects of activated and non-activated macrophages and macrophages from tumor-bearing mice on tumor growth in vivo. J Natl Cancer Inst 65: 913–920, 1980.

    PubMed  CAS  Google Scholar 

  198. North RJ, Spitalny GL, Berendt MJ. Significance of systemic macrophage activation in response to tumour growth. In van Furth (ed.), Mononuclear phagocytes: Functional aspects. The Hague: Martinus Mijhoff, 1980, pp. 1655–1676.

    Google Scholar 

  199. Currie GA. Serum lysozyme as a marker of host resistance. II. Patients with malignant melanoma, hypernephroma or breast carcinoma. Br J Cancer 33: 593–599, 1976.

    PubMed  CAS  Google Scholar 

  200. Zeya HI, Keku E, Richards F, Spurr CL. Monocyte and granulocyte defect in chronic lymphocytic leukaemia. Am J Pathol 95: 43–54, 1979.

    PubMed  CAS  Google Scholar 

  201. Currie GA, Eccles SA. Serum lysozyme as a marker of host resistance. I. Production by macrophages in rat sarcomata. Br J Cancer 33: 51–59, 1976.

    PubMed  CAS  Google Scholar 

  202. Kerbel RS, Pross HF, Elliott EV. Origin and partial characterization of Fc receptor-bearing cells found within experimental carcinomas and sarcomas. Int J Cancer 15: 918–932, 1975.

    PubMed  CAS  Google Scholar 

  203. Birbeck MSC, Carter RL. Observations on the ultrastructure of two hamster lymphomas with particular reference to infiltrating macrophages. Int J Cancer 9: 249–257, 1972.

    PubMed  CAS  Google Scholar 

  204. Haskill JS, Proctor JW, Yamamura A. Host responses within solid tumours. I. Monocytic effector cells within rat sarcomas. J Natl Cancer Inst 54: 387–393, 1975.

    PubMed  CAS  Google Scholar 

  205. Van Loveren H, Den Otter W. Macrophages in solid tumours. I. Immunlogically specific effector cells. J Natl Cancer Inst 53: 1057–1060, 1974.

    PubMed  Google Scholar 

  206. Russell SW, Mcintosh AT. Macrophages isolated from regressing Moloney sarcomas are more cytotoxic than those recovered from progressing sarcomas. Nature (Lond.) 268: 69–71, 1977.

    CAS  Google Scholar 

  207. Mantovani A. In vitro effects on tumour cells of macrophages isolated from an early-passage chemically- induced murine sarcoma and from its spontaneous metastases. Int J Cancer 27: 221–228, 1981.

    PubMed  CAS  Google Scholar 

  208. Pross HF, Kerbel RS. An assessment of intratumor phagocytic and surface marker-bearing cells in a series of autochthonous and early passaged chemically induced murine sarcomas. J Natl Cancer Inst 57: 1157–1167, 1976.

    PubMed  CAS  Google Scholar 

  209. Mansell PWA, Di Luzio NR. The in vivo destruction of human tumor by glucan activated macrophages. In Fink MA (ed.), The macrophage in neoplasia. New York: Academic Press, 1976, pp. 227–243.

    Google Scholar 

  210. Ree HJ, Crowley JP, Leone LA. Macrophage-histiocyte lysozyme activity in relation to the clinical presentation of Hodgkin’s disease: An immunohistochemical study. Cancer 47: 1988–1993, 1981.

    PubMed  CAS  Google Scholar 

  211. Hansen NE, Clausen PP, Karle H, Christoffersen P. Tissue and plasma lysozyme in Hodgkin’s disease. Scand J Haematol 27: 186–192, 1981.

    PubMed  CAS  Google Scholar 

  212. Ward PA, Berenberg JL. Defective regulation of inflammatory mediators in Hodgkin’s disease. Super normal levels of chemotactic-factor inactivator. New Engl J Med 290: 76–80, 1974.

    PubMed  CAS  Google Scholar 

  213. Pike MC, Snyderman R. Depression of macrophage function by a factor produced by neoplasmas: A mechanism for abrogation of immune surveillance. J Immunol 117: 1243–1249, 1976.

    PubMed  CAS  Google Scholar 

  214. Bice DE, Gruwell D, Salvaggio J. Inhibition of macrophage migration by plasma factor(s) from patients with neoplasms and normal individuals. J Reticuloendothel Soc 19: 281–289, 1976.

    PubMed  CAS  Google Scholar 

  215. Norris DA, Perez RE, Golitz LE, Seitz LE, Weston WL. Defective monocyte chemotaxis in mycosis fun- goides: Lack of essential helper lymphocytes. Cancer 44: 124–130, 1979.

    PubMed  CAS  Google Scholar 

  216. Snyderman R, Pike MC. Biological activities of a macrophage chemotaxis inhibitor (MCI) produced by neoplasms. In Quastel MR (ed.), Cell biology and immunology of leukocyte function. New York: Academic Press, 1979, pp. 535–546.

    Google Scholar 

  217. Pasternack GR, Snyderman R, Pike MC, Johnson RJ, Shin HS. Resistance of neoplasms to immunological destruction: Role of a macrophage chemotaxis inhibitor. J Exp Med 148: 92–102, 1978.

    Google Scholar 

  218. Fauve RM, Hevin M-B. Toxic effects of tumour cells on macrophages. In James K. McBride B, Stuart A. (eds.), The macrophage and cancer. Edinburgh: University of Edinburgh Medical School, 1977, pp. 264–270.

    Google Scholar 

  219. Normann SJ, Schardt M, Sorkin E. Do tumours escape surveillance by depression of macrophage inflammation? In James K, McBride B, Stuart A (eds.), The Macrophage and cancer. Edinburgh: University of Edin¬burgh Medical School, 1977, pp 247–257.

    Google Scholar 

  220. Normann SJ. Tumour cell threshold required for suppression of macrophage inflammation. J Natl Cancer Inst 60: 1091–1096, 1978.

    PubMed  CAS  Google Scholar 

  221. Normann SJ, Schardt M, Sorkin E. Cancer progression and monocyte inflammatory dysfunction: Relationship to tumour excision and metastasis. Int J Cancer 23: 110–113, 1979.

    Google Scholar 

  222. Kalish R, Brody NI. The effects of a tumour facilitating factor of B16 melanoma on the macrophage. J Invest Dermatol 80: 162–167, 1983.

    PubMed  CAS  Google Scholar 

  223. Normann SJ, Sorkin E. Inhibition of macrophage chemotaxis by neoplastic and other rapidly proliferating cells “in vitro ” Cancer Res 37: 705–711, 1977.

    PubMed  CAS  Google Scholar 

  224. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P, Salmona M, Mantovani A. Regulation of macrophage content of neoplasms by chemoattractants. Science 220: 210–212, 1983.

    PubMed  CAS  Google Scholar 

  225. Bottazzi B, Polentarutti N, Balsari A, Boraschi D, Ghezzi P, Salmona M, Mantovani A. Chemotactic activity for mononuclear phagocytes of culture supernatants from murine and human tumor cells: Evidence for a role in the regulation of the macrophage content of neoplastic tissues. Int J Cancer 31: 55–63, 1983.

    PubMed  CAS  Google Scholar 

  226. Ramaroo GVSV, Tompkins WAF. Inhibition of macrophage phagocytosis by a human colon tumour cell factor. J Reticuloendothel Soc 23: 373–382, 1978.

    Google Scholar 

  227. Saito H, Tomioka H. Suppressive factor against macrophage phagocytosis produced by cultured sarcoma-180 cells. Gann 70: 671–675, 1979.

    PubMed  CAS  Google Scholar 

  228. Rhodes J, Bishop M, Benfield J. Tumour surveillance: How tumours may resist macrophage-mediated host defense. Science 203: 179–182, 1979.

    PubMed  CAS  Google Scholar 

  229. Griffin FM. Effects of soluble immune complexes on Fc receptor and C3b receptor mediated phagocytosis by macrophages. J Exp Med 152: 905–919, 1980.

    PubMed  Google Scholar 

  230. Currie GA, Alexander P. Spontaneous shedding of TSTA by viable sarcoma cells: Its possible role in facilitating metastatic spread. Br J Cancer 29: 72–75, 1974.

    PubMed  CAS  Google Scholar 

  231. Israel L, Edelstein R. “In vivo” and “in vitro” studies on non-specific blocking factors of host origin in cancer patients. Role of plasma exchange as an immunotherapeutic modality. Isr J Med Sci 14: 105–130, 1977.

    Google Scholar 

  232. Eggen BM, Lamvik J, Ungsgaard G. Inhibitory effect on monocyte-mediated cytotoxicity of sera from patients with multiple myeloma and malignant lymphoma. Scand J Haematol 29: 381–388, 1982.

    PubMed  CAS  Google Scholar 

  233. Halliday WJ, Miller S. Leukocyte adherence inhibition: A simple test for cell-mediated immunity and serum blocking factors. Int J Cancer 9: 477–483, 1972.

    Google Scholar 

  234. Halliday WJ, Maluish A, Isbister WH. Detection of anti-tumour cell-mediated immunity and serum blocking factors in cancer patients by the leucocyte adherence inhibition test. Br J Cancer 29: 31–35, 1974.

    PubMed  CAS  Google Scholar 

  235. Grosser N, Thomson DMP. Cell-mediated anti-tumour immunity in breast cancer patients evaluated by antigen-induced leukocyte adherence inhibition in test tubes. Cancer Res 35: 2571–2579, 1975.

    PubMed  CAS  Google Scholar 

  236. Vose BM, Hughes R, Bazill GW. Failure of leucocyte-adherence inhibition assays to discriminate between benign and malignant breast diseases. Br J Cancer 40: 954–956, 1979.

    PubMed  CAS  Google Scholar 

  237. Fritze D, Fedra G, Kaufmann M. Prospective evaluation of the leukocyte adherence inhibition (LAI) test in breast cancer using a panel of extracts from known and unknown primary tumours. Int J Cancer 29: 261–264, 1982.

    PubMed  CAS  Google Scholar 

  238. Sarlo KT, Mortensen RF. Leukocyte adherence inhibition response to murine sarcoma-virus-induced tumours. II. Requirement of T-cell subpopulations and macrophages. Cell Immunol 79: 211–219, 1983.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishing, Boston/Dordrecht/Lancaster

About this chapter

Cite this chapter

Clark, A. (1985). The Macrophage and Cancer. In: Hancock, B.W., Milford Ward, A. (eds) Immunological Aspects of Cancer. Developments in Oncology, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2557-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2557-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9607-2

  • Online ISBN: 978-1-4613-2557-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics