Skip to main content
  • 87 Accesses

Abstract

Silicon integrated circuit (IC) technology has evolved to fabricate multi-million transistors on a single chip. Trial-and-error methodology to optimize such a complex process is no longer desirable because of the enormous cost and turn-around time. From this point of view, computer simulation is a cost-effective alternative, not only supplying a right answer for increasingly tight processing windows, but also serving as a tool to develop future technologies. When coupled with a device analysis program, a process simulator has proven to be a powerful design tool because the process sensitivity to device parameters can be easily extracted by simple changes made to processing conditions in computer inputs. [2.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. D. A. Antoniadis, S. E. Hansen, R. W. Dutton, and A. G. Gonzales, “SUPREM I — A Program for IC Process Modeling and Simulation”, SEL 77-006, Stanford Electronics La bora ties, Stanford University, Calif., May 1977.

    Google Scholar 

  2. D. A. Antoniadis, S. E. Hansen, and R. W. Dutton, “SUPREM II — A Program for IC Process Modeling and Simulation,” TR 5019. 2, Stanford Electronics Laboratories, Stanford University, Calif., June 1978.

    Google Scholar 

  3. C. P. Ho and S. E. Hansen, “SUPREM III — A Program for IC Process Modeling and Simulation,” TR SEL 83-001, Stanford Electronics Laboratories, Stanford University, Calif., July 1983.

    Google Scholar 

  4. D. Chin, M. R. Kump, and R. W. Dutton, “SUPRA: Stanford University PRocess Analysis Program,” Stanford University Laboratories, Stanford University, Stanford, Calif., July 1981.

    Google Scholar 

  5. D. Chin, M. R. Kump, H. G. Lee, and R. W. Dutton, Process Design Using Two-Dimensional Process and Device Simulators, IEEE Trans, on Electron Devices ED-29, Feb. 1982, pp. 336–340.

    Google Scholar 

  6. D. Chin and R. W. Dutton, “SOAP: Stanford Oxidation Analysis Program,” Stanford University Laboratories, TR SEL 83-002, Stanford University, Stanford, Calif. Aug. 1983.

    Google Scholar 

  7. B. R. Penumalli, “A Comprehensive Two-Dimensional VLSI Process Simulation Program” — BICEPS, IEEE Trans, on Electron Devices ED-36, Sept 1983, pp. 986–992.

    Google Scholar 

  8. G. E. Smith, III, and A. J. Steckl, “RECIPE — A Two-Dimensional VLSI Modeling Program,”IEEE Trans, on Electron Devices ED-29, Feb. 1982, pp. 216–221.

    Google Scholar 

  9. K. A. Salsburg, and H. H. Hensen, “FEDSS — Finite-Element Diffusion — Simulation System,”IEEE Trans, on Electron Devices ED-30, Sept 1983, pp. 1004–1011.

    Google Scholar 

  10. J. Lindhard, M. Scharff, and M. Schiott, Mat. Fys. Medd. Dan. Vid. Sclsk. (33), 1963.

    Google Scholar 

  11. B. E. Deal and A. S. Grove, “General Relationship for the thermal Oxidation of Silicon,”J. Appl. Phys, 36 (12), Dec 1965, pp. 3770–3778.

    Article  Google Scholar 

  12. C. P. Ho, J. D. Plummer, B. E. Deal, and J. D. Meindl, “Thermal Oxidation of Heavily Phosphorus Doped Silicon,”J. Electrochem. Soc., 125, Apr 1978, pp. 665–671.

    Article  Google Scholar 

  13. H. Z. Massoud, “Thermal Oxidation of Silicon in Dry Oxygen — Growth Kinetics and Charge Characterization in the Thin Regime,” Stanford Electronics Laboratories, TR G502-1, Stanford University, Stanford, Calif., June 1983.

    Google Scholar 

  14. R. O. Schwenker, E. S. Pan, and R. F. Lever, “Arsenic Clustering in Silicon,”J. Appl. Phys., 42, 1971, pp. 3195–3200.

    Article  Google Scholar 

  15. R. B. Fair and J. C. C. Tsai, “A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect,”J. Electrochem. Soc., 124, July 1977, pp. 1107–1121.

    Article  Google Scholar 

  16. H. Runge, “Distribution of Implanted Ions under Arbitrarily Shaped Mask Regions,”Phys. Stat. Sol. (a), vol. 39, 1977, pp. 595–599.

    Article  Google Scholar 

  17. J. Huang and L. Welliver, “on the Redistribution of Boron in the Diffused Layer during Thermal Oxidation,”J. Electrochem. Soc., vol. 117, 1970, pp. 1577–1580.

    Article  Google Scholar 

  18. H. G. Lee, R. W. Dutton, and D. A. Antoniadis, “On Redistribution of Boron during Thermal Oxidation of Silicon,”J. Electronchem. Soc., vol. 126, 1979, pp. 2001–2007.

    Article  Google Scholar 

  19. M. R. Kump and R. W. Dutton, “An Overview of Process Models and Two-Dimensional Analysis Tools,” Stanford Electronics Laboratories, TR G-201-13, Stanford University, Stanford, Calif., July 1982.

    Google Scholar 

  20. J. A. Greenfield and R. W. Dutton, “Nonplanar VLSI Device Analysis the Solution of Poisson’s Equation,”IEEE Trans. on Electron Devices, ED-27, Aug 1980, pp. 1520–1532.

    Google Scholar 

  21. R. B. Marcus and T. T. Sheng, “The Thermal Oxidation of Shaped Silicon Surfaces,”J. of Electrochem. Soc., 129, June 1982, pp. 1278–1289.

    Article  Google Scholar 

  22. L. O. Wilson, “Numerical Simulation of Gate Oxide Thinning in MOS Devices,”J. Electrochem,. Soc., 129, Apr 1982, pp. 831–837.

    Article  Google Scholar 

  23. D. Chin, i. Oh, S. M. Hu and J. L. Moll, Two-Dimensional Modeling of Local Oxidation, presented at Device Research Conference, olorado, June 1982.

    Google Scholar 

  24. E. P. EerNisse, “Viscous Flow of SiO2,”, Appl. Phys. Lett., 30, 1977, pp. 290–293.

    Article  Google Scholar 

  25. E. P. EerNisse, “Stress in Thermal SiO2 during Growth,”Appl Phys. Lett., 35, 1979, pp. 8–10.

    Article  Google Scholar 

  26. D. Chin, S. Y. Oh, R. W. Dutton, and J. L. Moll, “Two-Dimensional Oxidation Modeling,”IEEE Trans, on Electron Devices, ED-30, July 1983, pp. 744–749.

    Google Scholar 

  27. D. Chin, S. Y. Oh, R. W. Dutton, and J. L. Moll, “Two-Dimensional Local Oxidation,”IEEE Trans. on Electron Devices, ED-30, Sept 1983, pp. 993–999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cham, K.M., Oh, SY., Chin, D., Moll, J.L. (1986). Process Simulation. In: Computer-Aided Design and VLSI Device Development. The Springer International Series in Engineering and Computer Science, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2553-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2553-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9605-8

  • Online ISBN: 978-1-4613-2553-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics