Sliding, rolling, leaping and making sand waves

  • J. R. L. Allen

Abstract

Have you ever stood by a flooded mountain stream? Pebbles and cobbles are probably being audibly carried over the bed. From the evidence of their frequent collisions amongst themselves and with debris stationary on the bed, these stones must lie in dense array close to the stream bottom, to form what is called the bedload. However, this load is most unlikely to be visible, on account of the turbidity of the water. The smaller and more uniformly dispersed particles which make the current turbid are evidently being transported in a different way than the stones keeping close to the bed. They constitute the suspended load of the stream (Ch. 7).

Keywords

Migration Sandstone Beach Petrol Silt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Readings

  1. Abbott, J. E. and J. R. D. Francis 1977. Saltation and suspension trajectories of solid grains in water streams. Phil. Trans. R. Soc. Lond. A 284, 225–54.CrossRefGoogle Scholar
  2. Ackers, P. and W. R. White 1973. Sediment transport: a new approach and analysis. J. Hydraul. Div. Am. Soc. Civ. Engrs 99, 2041–60.Google Scholar
  3. Allen, J. R. L. 1965. Sedimenation in the lee of small underwater sand waves: an experimental study. J. Geol. 73, 95–116.CrossRefGoogle Scholar
  4. Allen, J. R. L . 1968. Current ripples. Amsterdam: North-HollandGoogle Scholar
  5. Allen, J. R. L. 1982. Sedimentary structures, Vol. I. Amsterdam: Elsevier.Google Scholar
  6. Allen, J. R. L . 1983. River bedforms: progress and problems. Spec. Publn Int. Assoc. Sedimentologists, no. 6, 19–33.Google Scholar
  7. Ashley, G. M., J. B. Southard and J. C. Boothroyd 1982. Deposition of climbing-ripple beds: a flume simulation. Sedimentology 29, 67–79.CrossRefGoogle Scholar
  8. Bagnold, R. A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian liquid under shear. Proc. R. Soc. Lond. A 225, 49–63.CrossRefGoogle Scholar
  9. Bagnold, R. A. 1955. Some flume experiments on large grains but little denser than the transporting fluid, and their implications. Proc. Instn Civ. Engrs 4, 174–205.CrossRefGoogle Scholar
  10. Bagnold, R. A . 1966 An approach to the sediment transport problem from general physics. Prof. Pap. US Geol. Surv., no. 422-I.Google Scholar
  11. Bridge, J. S. 1981a. A discussion of Bagnold’s (1956) bedload transport theory in relation to recent developments in bedload modelling. Earth Surf Processes Landforms 6, 187–90.CrossRefGoogle Scholar
  12. Bridge, J. S. 1981b. Bed shear stress over subaqueous dunes, and the transition to upper-stage plane beds. Sedimentology 28, 33–6.CrossRefGoogle Scholar
  13. Chepil, W. S. 1958. The use of evenly spaced hemispheres to evaluate aerodynamic forces on soil surfaces. Trans. Am. Geophys. Union 39, 397–404.Google Scholar
  14. Chepil, W. S. 1961. The use of spheres to measure lift and drag on wind-eroded soil grains. Proc. Soil Soc. Am. 25, 343–5.CrossRefGoogle Scholar
  15. Corrsin, S. and A. K. Kistler 1955. Free-stream boundaries of turbulent flow. Rep. Nat. Adv. Coun. Aeron., no. 1244.Google Scholar
  16. Costello, W. R. and J. B. Southard 1981. Flume experiments on lower-flow-regime bed forms in coarse sand. J. Sed. Petrol. 5, 849–65.Google Scholar
  17. Falco, R. E. 1977. Coherent motions in the outer regions of turbulent boundary layers. Phys. Fluids 20 (10, II), S124–32.CrossRefGoogle Scholar
  18. Gordon, R., J. B. Carmichael and F. J. Isackson 1972. Saltation of plastic balls in a ‘one-dimensional’ flume. Water Resources Res. 8, 444–59.CrossRefGoogle Scholar
  19. Graf, W. H. 1971. Hydraulics of sediment transport. New York: McGraw-Hill.Google Scholar
  20. Hammond, F. D. C. and A. D. Heathershaw 1981. A wave theory for sandwaves in shelf seas. Nature 293, 208–10.CrossRefGoogle Scholar
  21. Hardisty, J. 1983. An assessment and calibration of formulations for Bagnold’s bedload equation. J. Sed. Petrol. 53, 1007–10.Google Scholar
  22. Hill, H. M., V. S. Srinivasan and T. E. Unny 1969. Instability of flat bed in alluvial channels. J. Hydraul. Div. Am. Soc. Civ. Engrs 95, 1545–58.Google Scholar
  23. Hunter, R. E. 1977. Basic types of stratification in small eolian dunes. Sedimentology 24, 361–87.CrossRefGoogle Scholar
  24. Jackson, R. G. 1976. Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J. Fluid Mech. 77, 531–60.CrossRefGoogle Scholar
  25. Jopling, A. V. and D. L. Forbes 1979. Flume study of silt transportation and deposition Geogr. Annlr A 61, 67–85.CrossRefGoogle Scholar
  26. Kennedy, J. F. 1969. The formation of sediment ripples, dunes and antidunes. Annu. Rev. Fluid Mech. 1, 147–68.CrossRefGoogle Scholar
  27. Mantz, P. A. 1977. Incipient transport of fine grains and flakes by fluids - extended Shields diagram. J. Hydraul. Div. Am. Soc. Civ. Engrs 103, 601–15.Google Scholar
  28. Mantz, P. A. 1983. Semi empirical correlations for fine and coarse cohesionless sediment transport. Proc. Instn. Civ. Engrs (2) 75, 1–33.CrossRefGoogle Scholar
  29. Miller, M. C., I. N. McCave and P. D. Komar 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24, 507–27.CrossRefGoogle Scholar
  30. Milne-Thomson, L. M. 1962. Theoretical hydrodynamics, 2nd edn. London: Macmillan.Google Scholar
  31. Richards, K. J. 1980. The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99, 597–618.CrossRefGoogle Scholar
  32. Savage, S. B. 1979. Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53 - 96.CrossRefGoogle Scholar
  33. Savage, S. B. and D. J. Jeffrey 1981. The stress tensor in granular flow at high shear rates. J. Fluid Mech. 110, 255–72.CrossRefGoogle Scholar
  34. Savage, S. B. and S. McKeown 1983. Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders. J. Fluid Mech. 127, 453–72.CrossRefGoogle Scholar
  35. Simons, D. B., E. V. Richardson and C. F. Nordin 1965. Sedimentary structures generated by flow in alluvial channels. Spec. Publn Soc. Econ. Palaeont. Mineral., no. 12, 34–52.Google Scholar
  36. Southard, J. B. 1971. Representation of bed configurations in depth-velocity-size diagrams. J. Sed. Petrol. 41, 903–15.Google Scholar
  37. Southard, J. B. and J. R. Dingier 1971. Flume study of ripple propagation behind mounds on flat beds. Sedimentology 16, 251–63.CrossRefGoogle Scholar
  38. Thomas, A. S. W. and M. K. Bull 1983. On the role of wall- pressure fluctuations in deterministic motions in the turbulent boundary layer. J. Fluid Mech. 128, 283–322.CrossRefGoogle Scholar
  39. Ueda, H. and J. O. Hinze 1975. Fine-structure turbulence in the wall region of a turbulent boundary layer. Fluid Mech. 67, 125–43.CrossRefGoogle Scholar
  40. White, B. R. and J. C. Schulz 1977. Magnus effect in saltation. J. Fluid Mech. 81, 497–512.CrossRefGoogle Scholar
  41. Williams, P. B. and P. H. Kemp 1971. Initiation of ripples on flat sediment beds. J. Hydraul. Div. Am. Soc. Civ. Engrs 97, 505–22.Google Scholar
  42. Yalin, M. S. 1972. Mechanics of sediment transport. Oxford: Pergamon.Google Scholar

Copyright information

© J.R.L Allen 1985

Authors and Affiliations

  • J. R. L. Allen
    • 1
  1. 1.Department of GeologyUniversity of ReadingUK

Personalised recommendations