Skip to main content

Electrophoretic and Gas Exchange Patterns of Two Populations of Peltigera Rufescens

  • Chapter
Lichen Physiology and Cell Biology

Abstract

Measurements of net photosynthesis have been used extensively to determine the degree of ecotypic variation and photosynthetic plasticity in a variety of plants. Gas exchange patterns have been compared for species found along gradients of altitude (Mooney and Shropshire, 1967; Chapin and Oechel, 1983), light (Kershaw et al., 1983; MacFarlane et al., 1983), and microtopography (Kershaw, 1975; Larson and Kershaw, 1975) as well as contrasting maritime and continental (Pearcy, 1977; Mooney, 1980) or temperate and arctic (Brown and Kershaw, 1984) conditions. In all of these papers a similar logic is followed. Populations are chosen because of distinct differences in morphology, microclimatic or macroclimatic conditions. Measurements are then made of the response of net photosynthesis to light, temperature and season and any variation observed is used to support the initial premise that the populations were distinct. A circular argument is therefore generated, without any attempt to establish the genetic basis of these differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badger, M.R., Björkman, O., and Armond, P.A., 1982, An analysis of photosynthetic response and adaptation to temperature in higher plants: Temperature acclimation in the desert evergreen Nerium oleander L., Plant, Cell and Environment, 5: 85–99.

    CAS  Google Scholar 

  • Berry, J., and Bjorkman, O., 1980, Photosynthetic response and adaptation to temperature in higher plants, Annual Review of Plant Physiology, 31: 491–543.

    Article  Google Scholar 

  • Brewbaker, J.L., Upadhya, M.D., Makinen, Y., and MacDonald, T., 1968, Isoenzyme polymorphism in flowering plants. III. Gel electrophoretic methods and applications, Physiologia Plantarum, 21: 930–940.

    Article  CAS  Google Scholar 

  • Brown, D., and Kershaw, K.A., 1984, Photosynthetic capacity changes in Peltigera. II. Contrasting season patterns of net photo-synthesis in two populations of Peltigera rufescens, New Phytologist, 96: 447–457.

    Article  CAS  Google Scholar 

  • Brulfert, J., Arrabaca, M.C., Guerrier, D., and Queiroz, O., 1979, Changes in the isozymic pattern of phosphoenolpyruvate. An early step in photoperiodic control of Crassulacean Acid Metabolism level, Planta, 146: 129–133.

    Article  CAS  Google Scholar 

  • Burdon, J.J., Marshall, D.R., and Groves, R.H., 1980, Isozyme variation in Chondrilla juncea L. in Australia, Australian Journal of Botany, 28: 193–198.

    Article  CAS  Google Scholar 

  • Chapin III, F.S., and Oechel, W.C., 1983, Photosynthesis, respira-tion, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients, Ecology, 64: 743–751.

    Article  CAS  Google Scholar 

  • Coxson, D.C., and Kershaw, K.A., 1984, Low-temperature acclimation of net photosynthesis in the crustaceous lichen Caloplaca trachyphylla(Tuck.) A. Zahlbr., Canadian Journal of Botany, 62: 86–95.

    Article  Google Scholar 

  • De Jong, D.W., 1973, Effect of temperature and daylength on peroxidase and malate (NAD) dehydrogenase isozyme composition in tobacco leaf extracts, American Journal of Botany, 60: 846–852.

    Article  Google Scholar 

  • Fahselt, D., and Hageman, C., 1983, Isozyme banding patterns in two stands of Cetraria arenaria Karnef., The Bryologist, 86: 129–134.

    Article  Google Scholar 

  • Fahselt, D., and Jancey, R.C., 1977, Polyacrylamide gel electrophoresis of protein extracts from members of the Parmelia perforata complex, The Bryologist, 80: 429–438.

    Article  CAS  Google Scholar 

  • Kelly, W.A., and Adams, R.P., 1977, Seasonal variation of isozymes in Juniperus scopulorum: Systematic significance, American Journal of Botany, 64: 1092–1096.

    Article  Google Scholar 

  • Kershaw, K.A ., 1975, Studies on lichen dominated systems. XIV. The comparative ecology of Alectoria nitidulaand Cladina alpestris, Canadian Journal of Botany, 53: 2608–2613.

    Article  Google Scholar 

  • Kershaw, K.A., MacFarlane, J.D., Webber, M.R., and Fovargue, A., 1983, Phenotypic differences in the seasonal pattern of net photosynthesis in Cladonia stellaris, Canadian Journal of Botany, 61: 2169–2180.

    Article  CAS  Google Scholar 

  • Kershaw, K.A., and Smith, M.M., 1978, Studies on lichen dominated systems. XXI. The control of seasonal rates of net photosynthesis by moisture, light and temperature in Stereocaulon paschale, Canadian Journal of Botany 56: 2825–2830.

    Article  Google Scholar 

  • Kershaw, K.A., and Watson, S., 1983, The control of seasonal rates of net photosynthesis by moisture, light and temperature in Parmelia disjuncta Erichs., The Bryologist, 86: 31–43.

    Article  Google Scholar 

  • Kershaw, K.A., and Webber, M.R., 1984, Photosynthetic capacity changes in Peltigera I. The synthesis of additional photosynthetic units in P. praetextata, New Phytologist, 96: 437–446.

    Article  CAS  Google Scholar 

  • Krasnuk, M., Witham, F.H., and Jung, G.A., 1978a, Hydrolytic enzyme differences in cold-tolerant and cold-sensitive alfalfa, Agronomy Journal, 70: 597–605.

    Article  CAS  Google Scholar 

  • Krasnuk, M., Jung, G.A., and Witham, F.H., 1978b, Dehydrogenase levels in cold-tolerant and cold-sensitive alfalfa, Agronomy Journal, 70: 605–613.

    Article  CAS  Google Scholar 

  • Larson, D.W., 1980, Seasonal change in the pattern of net CO2 exchange in Umbilicaria lichens, New Phytologist, 84: 349–369.

    Article  CAS  Google Scholar 

  • Larson, D.W., and Kershaw, K.A., 1975, Studies on lichen dominated systems. XIII. Seasonal and geographical variation of net CO2 exchange of Alectoria ochroleuca, Canadian Journal of Botany, 53: 2598–2607.

    Article  Google Scholar 

  • Liu, E.H., Sharitz, R.R., and Smith, M.H., 1978, Thermal sensitivities of malate dehydrogenase isozymes in Typha, American Journal of Botany, 65: 214–220.

    Article  CAS  Google Scholar 

  • MacFarlane, J.D., and Kershaw, K.A., 1980, Physiological-environmental interactions in lichens. IX. Thermal stress and lichen ecology, New Phytologist, 84: 669–685.

    Article  CAS  Google Scholar 

  • MacFarlane, J.D., Kershaw, K.A., and Webber, M.R., 1983, Physiological-environmental interactions in lichens. XVII. Phenotypic differences in the seasonal pattern of net photosynthesis in Cladonia rangiferina, New Phytologist, 94: 217–233.

    Article  CAS  Google Scholar 

  • McGown, B.H., Beck, G.E., and Hall, T.C., 1969, The hardening response of three clones of Dianthus and the corresponding complement of peroxidase isoenzymes, Journal of the American Society for Horticultural Science, 94: 691–693.

    Google Scholar 

  • McMillan, C., 1980, Isozymes of tropical seagrasses from the Indo- Pacific and the Gulf of Mexico-Caribbean, Aquatic Botany, 8: 163–172.

    Article  CAS  Google Scholar 

  • Mooney, H.A., 1980, Photosynthetic plasticity of populations of Heliotropium curassavicum L. originating from differing thermal regimes, Oecologia, 45: 372–376.

    Article  Google Scholar 

  • Mooney, H.A., Bjorkman, O., and Collatz, G.J., 1978, Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricataI. Carbon dioxide exchange characteristics of intact leaves, Plant Physiology, 61: 406–410.

    Article  PubMed  CAS  Google Scholar 

  • Mooney, H.A., and Shropshire, F., 1967, Population variability in temperature related photosynthetic acclimation, Oecologia Plantarum, 11 1–13.

    Google Scholar 

  • Pearcy, R.W., 1977, Acclimation of photosynthetic and respiratory carbon dioxide exchange to growth temperature in Atriplex lentiformis (Torr.) Wats., Plant Physiology, 59: 795–799.

    Article  PubMed  CAS  Google Scholar 

  • Prézelin, B.B., 1981, Light interactions in photosynthesis, in: “Physiological Bases of Phytoplankton Ecology,” Bulletin 210, T. Piatt, ed., pp. 1–43, Department of Fisheries and Oceans, Ottawa.

    Google Scholar 

  • Richardson, K., Beardall, J., and Raven, J.A., 1983, Adaptation of unicellular algae to irradiance: an analysis of strategies, New Phytologist, 93: 157–191.

    Article  Google Scholar 

  • Sawada, S., and Miyachi, S., 1974a, Effects of growth temperature on photosynthetic carbon metabolism in green plants I. Photo-synthetic activities of various plants acclimatized to varied temperatures, Plant and Cell Physiology, 15: 111–120.

    CAS  Google Scholar 

  • Sawada, S., and Miyachi, S., 1974b, Effects of growth temperature on photosynthetic carbon in green plants II. Photosynthetic 14CO2 incorporation in plants acclimatized to varied temperatures, Plantand Cell Physiology, 15: 225–238.

    CAS  Google Scholar 

  • Shannon, M.C., Ballal, S.K., and Harris, J.W., 1973, Starch gel electrophoresis of enzymes from nine species of Polyporus, American Journal of Botany, 60: 96–100.

    Article  CAS  Google Scholar 

  • Shaw, C.R., and Prasad, R., 1970, Starch gel electrophoresis of enzymes — A compilation of recipes, Biochemical Genetics, 4: 297–320.

    Article  PubMed  CAS  Google Scholar 

  • Shecter, Y., and De Wet, J.M.J., 1975, Comparative electrophoresis and isozyme analysis of seed protein from cultivated Sorghum, American Journal of Botany, 62: 254–261.

    Article  Google Scholar 

  • Shumacker, K.M., and Babble, G.R., 1980, Patterns of allozymic similarity in ecologically central and marginal populations of Hordeum jubatum, Evolution, 34: 110–116.

    Article  Google Scholar 

  • Smith, E.M., and Hadley, E.B., 1974, Photosynthetic and respiratory acclimation to temperature in Ledum groenlandicum populations, Arctic and Alpine Research, 6: 13–27.

    Article  Google Scholar 

  • Snelgar, W.P., Green, T.G.A., and Beltz., C.K., 1981, Carbon dioxide exchange in lichens: estimation of internal thallus CO2 transport resistance, Plant Physiology, 52: 417–422.

    Article  CAS  Google Scholar 

  • Sorenson, W.G., Larsh, H.W. Larsh, and Hamp, S., 1971, Acrylamide gel electrophoresis of proteins from Aspergillus species, American Journal of Botany, 58: 588–593.

    Article  Google Scholar 

  • Soudek, Jr. D., and Robinson, G.G.C., 1983, Electrophoretic analysis of the species and population structure of the diatom Asterionella formosa, Canadian Journal of Botany, 61: 418–433.

    Article  Google Scholar 

  • Switzer III, R.C., Merril, C.R., and Shifrin, S., 1979, A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels, Analytical Biochemistry, 98: 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Tegler, B., and Kershaw, K.A., 1980, Studies on lichen-dominated systems. XXIII. The control of seasonal rates of net photosynthesis by moisture, light and temperature in Cladonia rangiferina, Canadian Journal of Botany, 58: 1851–1858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Brown, D., Kershaw, K.A. (1985). Electrophoretic and Gas Exchange Patterns of Two Populations of Peltigera Rufescens . In: Brown, D.H. (eds) Lichen Physiology and Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2527-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2527-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9526-6

  • Online ISBN: 978-1-4613-2527-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics