Advertisement

A++/Ti Nonstoichiometry in Alkaline Earth Titanates, ATi03

  • Y. H. Han
  • M. P. Harmer
  • Y. H. Hu
  • D. M. Smyth
Part of the NATO ASI Series book series (NSSB, volume 129)

Abstract

Ternary oxides offer the possibility of variations in the ratios of the two metallic constituents as well as in the metal-nonmetal ratios. The extent of this cation-cation nonstoichiometry, and its effect on material properties, is of interest because numerous useful ferroelectric, piezoelectric, magnetic, and electrooptic materials are found among the ternary oxides. When significant cation-cation nonstoichiometry is tolerated in the single phase system, the resulting changes in ionic defect concentrations can affect charge and mass transport and oxidation-reduction equilibria. If the tolerance for nonstoichiometry is exceeded, second phases will be present that can also profoundly affect the material properties, e.g., if the second phase is liquid at the sintering temperature, densification rates and the resulting microstructure will be strongly influenced. This paper will discuss the cation-cation nonstoichiometry of the alkaline earth titanates having the perovskite structure, BaTi03, SrTi03, and CaTiO3. These compounds share the generic formula ABO3, and the structure is characterized by having two very different types of cation sites, a large, 12-coordinate A site, occupied by the alkaline earth ions, and a smaller, 6-coordinate, octahedral B site, occupied by the titanium. In the ideally pure, stoichiometric compounds, all equivalent lattice sites are completely occupied by the appropriate species.

Keywords

Alkaline Earth Perovskite Structure American Ceramic Society Ternary Oxide Acceptor Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Pechini, U.S. pat. 3, 330, 697 (1967).Google Scholar
  2. 2.
    R. K. Sharma, N.-H. Chan, and D. M. Smyth,J. Am. Ceram. Soc. 64:448 (1981).CrossRefGoogle Scholar
  3. 3.
    N.-H. Chan, R. K. Sharma, and D. M. Smyth,J. Electrochem. Soc. 128:1762 (1981).CrossRefGoogle Scholar
  4. 4.
    N.-H. Chan, R. K. Sharma, and D. M. Smyth,J. Am. Ceram. Soc. 64:556 (1981).CrossRefGoogle Scholar
  5. 5.
    eidem, ibid. 65:167 (1982).Google Scholar
  6. 6.
    Y. H. Hu, M. P. Harmer, and D. M. Smyth, to be presented at the 37th Pacific Coast Regional Meeting of the American Ceramic Society, San Francisco, Oct. 28 - 31 (1984).Google Scholar
  7. 7.
    D. E. Rase and R. Roy,J. Am. Ceram. Soc. 38:102 (1955).CrossRefGoogle Scholar
  8. 8.
    H. M. 0fBryan, Jr. and J. Thompson, Jr.,J. Am. Ceram. Soc., 57: 522 (1974).CrossRefGoogle Scholar
  9. 9.
    T. Negas, R. S. Roth, H. S. Parker and D. Minor,J. Solid State Chem. 9: 297 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    N. G. Eror and D. M. Smyth,J. Solid State Chem., 24: 235 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    N.-H. Chan and D. M. Smyth,J. Electrochem. Soc., 123:1584 (1976).CrossRefGoogle Scholar
  12. 12.
    G. V. Lewis and C. R. A. Catlow,Radiat. Eff., 73:307 (1983).CrossRefGoogle Scholar
  13. 13.
    S. N. Ruddlesden and P. Popper,Acta Crystallogr., 11: 54 (1958).CrossRefGoogle Scholar
  14. 14.
    S. Witek D, M Smyth, and H. Pickup, J, Am, Ceram, Soc. 67: 372 (1984).CrossRefGoogle Scholar
  15. 15.
    N. Stenton and M. P. Harmer, pp. 156–65in Advances in Ceramics: VII, Additives and Interfaces in Electronic Ceramics. Edited by M. F. Yan and A. H. Heuer. The American Ceramic Society, Columbus, OH 1984.Google Scholar
  16. 16.
    E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists, 1964 (Figs. 297 and 298) and 1969 (Fig. 2334 ). Edited by M. K. Reser. The American Ceramic Society, Columbus, Ohio.Google Scholar
  17. 17.
    R. J. D. Tilley,J. Solid State Chem. 21: 293 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    X. W. Zhang, M. Lai, and D. M. Smyth, Paper 122-E-84 presented at the 86th Annual Meeting of the American Ceramic Society, Pittsburgh, May 3 (1984).Google Scholar
  19. 19.
    T. Takahashi,in “Physics of Electrolytes,” Vol. 2, J. Hladik, Editor, Chap. 24, Academic Press, New York (1972).Google Scholar
  20. 20.
    J. Appleby, Y. H. Han, and D. M. Smyth, paper 13-E-83, presented at the 85th Annual Meeting of the Am. Ceram. Soc., Chicago, April 25 (1983).Google Scholar
  21. 21.
    H. M. Chan, M. P. Harmer, M. Lai, and D. M. Smyth, to appear in the Proceedings of the Symposium on Electron Microscopy of Materials, Annual Meeting of the Materials Research Society, Boston, November (1983).Google Scholar
  22. 22.
    Y. Sakabe, J. Appleby, Y. H. Han, D. Wintergrass, and D. M. Smyth, Paper 123-E-84 presented at the 86th Annual Meeting of the American Ceramic Society, Pittsburgh, May 3 (1984).Google Scholar
  23. 23.
    M. Lai, Y. H. Hu, M. P. Harmer, and D. M. Smyth, to be presented at the 37th Pacific Coast Regional Meeting of the American Ceramic Society, San Francisco, Oct. 28–31 (1984).Google Scholar
  24. 24.
    O. Muller and R. Roy, “The Major Ternary Structural Families”, Springer, New York (1974).Google Scholar
  25. 25.
    J. Lecomte, J. P. Loup, M. Hervieu, and B. Raveau,Phys. Stat. Sol. 66:551 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Y. H. Han
    • 1
  • M. P. Harmer
    • 1
  • Y. H. Hu
    • 1
  • D. M. Smyth
    • 1
  1. 1.Materials Research Center #32Lehigh UniversityBethlehemUSA

Personalised recommendations