A Predictive Molecular Orbital Theory Applied to Defects and Structures of Transition Metal Oxides

  • Alfred B. Anderson
  • Robin W. Grimes
  • Arthur H. Heuer
Part of the NATO ASI Series book series (NSSB, volume 129)


A quantum chemical approach for determining defect structures in cation-deficient transition metal monoxides is described. The method employs molecular orbital electronic energies for cations and anions in nearest-neighbor coordinations and adds to them interatomic pair-wise repulsion energies. Using this approach, zinc-blende structure extended defect clusters composed of 4:1 cluster building blocks are found to be most stable in Fe1-xO. These clusters account for the observed P′ and P″ phases in the iron oxide. The theory predicts that isolated cation vacancies with no clustering are most stable in Ni1-xO, in agreement with conductivity and diffusion data in the literature. For Co1-xO the experimental situation is unclear, and our theory suggests that small, but not extended, 4:1 defect clusters may form.


Cobaltous Oxide Internuclear Distance Defect Cluster Tetrahedral Interstice Bond Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Anderson, Chem. Phys. Lett. 76:155 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    A. B. Anderson, J. Chem. Phys. 60:2477 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    A. B. Anderson, J. Chem. Phys. 63:4430 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    A. B. Anderson, R. G. Parr, Chem. Phys. Lett. 10:293 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    E. Clementi and C. Roetti, “Atomic Data and Nuclear Data Tables”, Academic, New York (1974).Google Scholar
  6. 6.
    A. B. Anderson, J. Chem. Phys. 62:1187 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    A. B. Anderson, R. W. Grimes, A. H. Heuer, J. Sol. St. Chem. (to be published).Google Scholar
  8. 8.
    N. C. Debnath, A. B. Anderson, J. Electrochem. Soc. 129:2170 (1982).CrossRefGoogle Scholar
  9. 9.
    P. Tarte, J. Prendhomme, F. Jeannot, O. Ewrard, C. R. Acad. Sc. Fr. c269:1529 (1969).Google Scholar
  10. 10.
    A. K. Cheetham, B. E. F. Fender, R. I. Taylor, J. Phys. C:Solit St. Phys. 4:2160 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    N. N. Greenwood, A. T. Howe, J. C. S. Dalton 1:110 (1972).CrossRefGoogle Scholar
  12. 12.
    F. Koch, J. B. Cohen, Acta Cryst. B25:275 (1969).CrossRefGoogle Scholar
  13. 13.
    J. R. Gavarri, C. Carel, D. Weigel, J. Sol. St. Chem. 29:81 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    B. Andersson, J. O. Sletnes, Acta Cryst. A33: 268 (1977).CrossRefGoogle Scholar
  15. 15.
    C. Leberton, L. W. Hobbs, Rad. Effects 74:227 (1983).CrossRefGoogle Scholar
  16. 16.
    R. Dieckmann, Z. Physik. Chem. Neue Folge 107:189 (1977).CrossRefGoogle Scholar
  17. 17.
    G. Dhalenne, J. C. Rouchaud, G. Revel, A. Revcolevscki, R. Collongues, C. R. Acad. Sci. 272:538 (1971).Google Scholar
  18. 18.
    N. L. Peterson, C. L. Wiley, J. Phys. Chem. Solids (submitted).Google Scholar
  19. 19.
    E. Fryt, Oxid. Met. 10:311 (1976).CrossRefGoogle Scholar
  20. 20.
    C. R. A. Catlow, A. M. Stoneham, J. Am.Ceram. Soc. 64:234 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Alfred B. Anderson
    • 1
    • 2
  • Robin W. Grimes
    • 1
  • Arthur H. Heuer
    • 2
  1. 1.Department of Metallurgy and Materials ScienceCase Western Reserve UniversityClevelandUSA
  2. 2.Department of ChemistryUK

Personalised recommendations