Advertisement

Defect Structure and Transport Properties of Titanates

  • Nicholas G. Eror
Part of the NATO ASI Series book series (NSSB, volume 129)

Abstract

The titanates are often described as nonstoichiometric compounds with oxygen vacancies as the principal ionic defects and accompanying electrons as the compensating electronic defect. This intrinsic defect model usually holds at low anion activities but is not adequate in characterizing the defect properties at higher anion activities (1–14). At all except the lowest anion activities the intrinsic defect concentrations are very low and are often less than 100 ppm in ambient air for oxides. This means that exceptional purities, which are very seldom achieved, are required in order to preserve intrinsic disorder at higher oxygen activities. When potential impurities are considered along with ionic size it becomes evident that the highest probability for aliovalent impurities are acceptors substituting for titanium. The acceptor impurities will be compensated by the introduction of an equivalent number of oxygen vacancies. For the introduction of a two level acceptor on a titanium site (the most probable) we may write.

Keywords

Oxygen Vacancy Anion Activity Acceptor Impurity Intrinsic Disorder Mass Transport Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. G. Eror, D. M. Smyth, J. Solid State Chem., 24:235 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    N. G. Eror, U. Balachandran, J. Solid State Chem., 42:227 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    N. G. Eror, U. Balachandran, J. Solid State Chem., 43:196 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    U. Balachandran, N. G. Eror, J. Mat. Sci., 17:2133 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    U. Balachandran, N. G. Eror, Mat. Sci. and Engineering, 54:221 (1982).CrossRefGoogle Scholar
  6. 6.
    N. H. Chan, R. K. Sharma, D. M. Smyth, J. Electrochem. Soc., 128:1762 (1981).CrossRefGoogle Scholar
  7. 7.
    U. Balachandran, N. G. Eror, J. Solid State Chem., 39:351 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    U. Balachandran, B. Odekirk, N. G. Eror, J. Solid State Chem., 41:185 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    N. G. Eror, U. Balachandran, J. Amer. Ceram. Soc., 65:C73 (1982).CrossRefGoogle Scholar
  10. 10.
    U. Balachandran, N. G. Eror, J. Phys. Chem. Solids, (in press).Google Scholar
  11. 11.
    N. G. Eror, U. Balachandran, to be published.Google Scholar
  12. 12.
    N. H. Chan, D. M. Smyth, J. Electrochem. Soc., 123:1584 (1976).CrossRefGoogle Scholar
  13. 13.
    N. H. Chan, R. K. Sharma, D. M. Smyth, J. Amer. Ceram. Soc., 64:556 (1981).CrossRefGoogle Scholar
  14. 14.
    U. Balachandran, N. G. Eror, J. Less-Common Metals, 85:111 (1982).CrossRefGoogle Scholar
  15. 15.
    N. G. Eror, U. Balachandran, J. Amer. Cer. Soc., 61:426 (1982).CrossRefGoogle Scholar
  16. 16.
    E. J. W. Verwey, et al., Philips Res. Rept., 5:173 (1950).Google Scholar
  17. 17.
    F. A. Kroger, H. J. Vink, in “Solid State Physics” (F. Seitz and D. Turnbull, Eds.), Vol. III, pp. 307–435, Academic Press, New York (1956).Google Scholar
  18. 18.
    R. F. Brebrick, “Progress in Solid State Chemistry,” Vol. III, Pergamon, Oxford/New York (1966).Google Scholar
  19. 19.
    G. Mandel, Phys. Rev. A, 134:1073 (1964).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    G. Mandel, Phys. Rev. A, 136:826 (1964).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    F. A. Kroger,. “Physical Chemistry: An Advanced Treatise” (H. Eyring, Ed.), Vol. X, pp. 229–259, Academic Press, New York (1970).Google Scholar
  22. 22.
    N. G. Eror, D. M. Smyth, “The Chemistry of Extended Defects in Non-Metallic Solids” (L. Eyring, M. O’Keefe, Eds.), pp. 62–74, North-Holland, Amsterdam (1970).Google Scholar
  23. 23.
    N. G. Eror, J. Solid State Chem., 37:281 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    N. G. Eror, U. Balachandran, J. Solid State Chem., 40:85 (1981).ADSCrossRefGoogle Scholar
  25. 25.
    U. Balachandran, N. G. Eror, J. Mat. Sci., 17:1207 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    U. Balachandran, N. G. Eror, J. Mat. Sci., 17:1795 (1982).ADSCrossRefGoogle Scholar
  27. 27.
    U. Balachandran, N. G. Eror, J. Less-Common Metals, 85:11 (1982).CrossRefGoogle Scholar
  28. 28.
    U. Balachandran, N. G. Eror, Phys. Stat. Solidi A, 71:179 (1982).ADSCrossRefGoogle Scholar
  29. 29.
    U. Balachandran, N. G. Eror, J. Electrochem. Soc., 129:1021 (1982).CrossRefGoogle Scholar
  30. 30.
    U. Balachandran, N. G. Eror, J. Phys. Chem. Solids, 44:231 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    N. F. Mott, R. W. Gurney, “Electronic Processes in Ionic Crystals”, Clarendon Press, Oxford, England, p. 41 (1940).zbMATHGoogle Scholar
  32. 32.
    O. Stasiw, J. Teltow, Ann. Phys. Lpz, 1:261 (1947).ADSCrossRefGoogle Scholar
  33. 33.
    E. Koch, C. Wagner, Z. Phys. Chem., B338:295 (1937).Google Scholar
  34. 34.
    A. B. Lidiard, Phil. Mag., 46:815 (1955).Google Scholar
  35. 35.
    A. B. Lidiard, Phil. Mag., 46:1215 (1955).Google Scholar
  36. 36.
    A. B. Lidiard, “Handbuch der Physik”, Vol. XX Springer-Verlag, Berlin, p. 246 (1957).Google Scholar
  37. 37.
    N. Laurance, Phys. Rev., 120:57 (1960).ADSCrossRefGoogle Scholar
  38. 38.
    F. J. Keneshea, W. J. Fredericks, J. Chem. Phys., 38:1952 (1963).ADSCrossRefGoogle Scholar
  39. 39.
    F. J. Keneshea, W. J. Fredericks, J. Phys. Chem. Solids, 26:501 (1965).ADSCrossRefGoogle Scholar
  40. 40.
    R. G. Fuller, Phys. Rev., 142:524 (1966).ADSCrossRefGoogle Scholar
  41. 41.
    C. A. Allen, D. T. Ireland, W. J. Fredericks, J. Chem. Phys., 46:2000 (1967).ADSCrossRefGoogle Scholar
  42. 42.
    W. A. Mannion, C. A. Allen, W. J. Fredericks, J. Chem. Phys., 48:1537 (1968).ADSCrossRefGoogle Scholar
  43. 43.
    C. A. Allen, W. J. Fredericks, J. Solid State Chem., 1:205 (1970).ADSCrossRefGoogle Scholar
  44. 44.
    U. C. Nelson, R. J. Frianf, J. Phys. Chem. Solids, 31:825 (1970).ADSCrossRefGoogle Scholar
  45. 45.
    F. Beniere, M. Beniere, M. Chemla, J. Phys. Chem. Solids, 31:1205 (1970).ADSCrossRefGoogle Scholar
  46. 46.
    J. C. Krause, W. J. Fredericks, J. Phys. Chem. Solids, 32:2673 (1971).ADSCrossRefGoogle Scholar
  47. 47.
    R. E. Chaney, W. J. Fredericks, J. Solid State Chem., 6:240 (1972).ADSCrossRefGoogle Scholar
  48. 48.
    F. Beniere, M. Beniere, M. Chemla, J. Chem. Phys., 56:549 (1972).ADSCrossRefGoogle Scholar
  49. 49.
    C. A. Allen, W. J. Fredericks, Phys. Stat. Sol (b), 55:615 (1973).ADSCrossRefGoogle Scholar
  50. 50.
    J. L. Krause, W. J. Fredericks, J. Phys. (Paris) 34:C9–25 (1973).CrossRefGoogle Scholar
  51. 51.
    F. Beniere, R. Rokbani, J. Phys. Chem. Solids, 36:1151 (1975).ADSCrossRefGoogle Scholar
  52. 52.
    H. Machida, W. J. Fredericks, J. Phys (Paris), 37:C7–385 (1976).CrossRefGoogle Scholar
  53. 53.
    M. Beniere, M. Chemla, F. Beniere, J. Phys. Chem. Solids, 37:525 (1976).ADSCrossRefGoogle Scholar
  54. 54.
    J. S. Dryden, R. G. Heydon, J. Phys. C: Solid State Phys., 10:2333 (1977).ADSCrossRefGoogle Scholar
  55. 55.
    H. Machida, W. J. Fredericks, J. Phys. Chem. Solids, 39:797 (1978).ADSCrossRefGoogle Scholar
  56. 56.
    E. Lilley, J. Phys. (Paris) 41:C6–429 (1980).CrossRefGoogle Scholar
  57. 57.
    A. P. Batra, L. M. Slifkin, J. Phys. C: Solid State Phys., 9:947 (1976).ADSCrossRefGoogle Scholar
  58. 58.
    A. P. Batra, L. M. Slifkin, J. Phys. C: Solid State Phys., 11:L317 (1978).ADSCrossRefGoogle Scholar
  59. 59.
    A. P. Batra, L. M. Slifkin, Phys. Stat. Sol, (b), 93:K77 (1979).ADSCrossRefGoogle Scholar
  60. 60.
    J. E. Hanlon, J. Chem. Phys., 32:1492 (1960).ADSCrossRefGoogle Scholar
  61. 61.
    R. A. Perkins, R. A. Rapp, Met. Trans., 4:193 (1973).CrossRefGoogle Scholar
  62. 62.
    A. M. Glass, J. Chem. Phys., 46:2080 (1967).ADSCrossRefGoogle Scholar
  63. 63.
    W. L. Roth, Acta Cryst., 13:40 (1960).CrossRefGoogle Scholar
  64. 64.
    F. Koch, J. B. Cohen, Acta Cryst., Sect. B, 25:275 (1969).CrossRefGoogle Scholar
  65. 65.
    A. K. Cheetham, B. E. F. Fender, R. I. Taylor, J. Phys. C: Solid State Phys., 4:2160 (1971).ADSCrossRefGoogle Scholar
  66. 66.
    C. R. A. Catlow, B. E. F. Fender, J. Phys. C: Solid State Phys., 8:3267 (1975).ADSCrossRefGoogle Scholar
  67. 67.
    C. R. A. Catlow, B. E. F. Fender, D. G. Muxworthy, J. Phys (Paris), C7:67 (1977).Google Scholar
  68. 68.
    P. D. Battle, A. K. Cheetham, J. Phys. C: Solid State Phys., 12:337 (1979).ADSCrossRefGoogle Scholar
  69. 69.
    M. Morinaga, J. B. Cohen, Acta. Cryst., A32:387 (1976).Google Scholar
  70. 70.
    B. T. M. Willis, Proc. Br. Ceram. Soc., 1:9 (1965).Google Scholar
  71. 71.
    B. T. M. Willis, J. Phys. (Paris), 25:431 (1964).CrossRefGoogle Scholar
  72. 72.
    L. Manes, B. Manes-Pozzi, “Plutonium 1975 and Other Actinides”, H. Blank, R. Lindner, Eds., North-Holland Publ., Amsterdam, p. 145 (1976).Google Scholar
  73. 73.
    M. DeFranko, J. P. Gatesoupe, “Plutonium 1975 and Other Actinides”, H. Blank, R. Lindner, Eds., North-Holland Publ., Amsterdam, p. 133 (1976).Google Scholar
  74. 74.
    P. Chereau, J. P. Wadier, J. Nucl. Mater., 46:1 (1973).ADSCrossRefGoogle Scholar
  75. 75.
    B. E. F. Fender, “Chemical Applications of Thermal Neutron Scattering”, B. T. M. Wills, Ed., Oxford Univ. Press, London, p. 250 (1973).Google Scholar
  76. 76.
    L. W. Hobbs, J. Phys. (Paris), C7:3 (1976).Google Scholar
  77. 77.
    M. Hayakawa, M. Morinaga, J. B. Cohen, “Defects and Transport in Oxides”, M. S. Selzer and T. I. Jaffe, Eds., Plenum, New York, p. 177 (1974).Google Scholar
  78. 78.
    B. T. M. Willis, Proc. Roy. Soc. (London), A274:133 (1963).ADSGoogle Scholar
  79. 79.
    B. T. M. Willis, Acta. Cryst., 18:75 (1965).MathSciNetCrossRefGoogle Scholar
  80. 80.
    C. R. A. Cat low, R. James, Chem. Phys. Solids Their Surf., 8:108 (1980).CrossRefGoogle Scholar
  81. 81.
    C. R. A. Catlow, “Physics and Chemistry of Refractory Oxides”, Proc. NATO Summer School (1981).Google Scholar
  82. 82.
    A. N. Cormack, C. R. A. Catlow, P. W. Taskar, Radiat. Eff., 74:234 (1983).CrossRefGoogle Scholar
  83. 83.
    A. S. Nowick, D. S. Park, “Superionic Conductors”, G. Mahan and W. Roth, Eds., Plenum, New York, p. 395 (1976).Google Scholar
  84. 84.
    A. S. Nowick, D. Y. Wang, D. S. Park, J. Griffith, “Fast Ion Transport in Solids”, P. Vashishta, J. N. Mundy, G. K. Shenoy, Eds., Elsevier/North-Holland, Amsterdam, p. 673 (1979).Google Scholar
  85. 85.
    K. El Adham, Thesis, Univ. Grenoble, Grenoble (1978).Google Scholar
  86. 86.
    U. Balachandran, N. G. Eror, Scripta Met., 16: 275 (1982).CrossRefGoogle Scholar
  87. 87.
    U. Balachandran, N. G. Eror, J. Less-Common Metals, 84:291 (1982).CrossRefGoogle Scholar
  88. 88.
    N. G. Eror, U. Balachandran, Solid State Commun., 44:1117 (1982).ADSCrossRefGoogle Scholar
  89. 89.
    G. V. Lewis, Ph.D. Thesis, Univ. of London, London (1984).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Nicholas G. Eror
    • 1
  1. 1.Oregon Graduate CenterUSA

Personalised recommendations