Diffusional Growth of Al2O3 Scales and Subscales on Ni-Al, Fe-Al and Fe-Mn-Al Alloys

  • W. W. Smeltzer
  • P. R. S. Jackson
  • H. A. Ahmed
Part of the NATO ASI Series book series (NSSB, volume 129)


Oxidation of Ni-A l, Fe-Al and Fe-Mn-Al alloys at high temperature exhibits transitions from scale-subscale growth to scale growth dependent upon alloy aluminum contents. Alloy compositions presently can be specified leading to growth of scales containing an Al2O3 layer which acts as the most protective barrier presently available for imparting high temperature corrosion resistance to these alloys. It is demonstrated that this Al2O3 layer can exist either as an external film or beneath oxide layers composed of solvent alloy metal oxides, dependent upon alloy composition and structure.


Oxide Scale Al203 Layer Alumina Scale External Scale Austenitic Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Smeltzer, H. M. Hindam and F. A. Elrefaie, Growth and microstructures of oxide scales and subscales on Ni-Al γ-solid solution alloys, in: “High Temperature Corrosion,” NACE 6, R. A. Rapp, ed., NACE, Houston (1983).Google Scholar
  2. 2.
    H. M. Hindam, D. P. Whittle, J. Matls. Sc. 18:1389 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    P. Tomaszewicz, R. R. Wallwork, Rev. High Temp. Mats. 4:75 (1978).Google Scholar
  4. 4.
    G. C. Wood, F. H. Stott, The Development and Growth of Protective α-Al2O3 Scales on Alloys, in: “High Temperature Corrosion,” NACE 6, R. A. Rapp, ed., NACE, Houston (1983).Google Scholar
  5. 5.
    P. Tomaszewicz, R. R. Wallwork, Oxid, Met. 19:165 (1983).CrossRefGoogle Scholar
  6. 6.
    H. A. Ahmed, W. W. Smeltzer, to be published.Google Scholar
  7. 7.
    P. R. S. Jackson, The Oxidation of Iron-Manganese-Aluminum Based Alloys, Ph.D. Thesis, University of New South Wales, Sydney (1982).Google Scholar
  8. 8.
    P. R. S. Jackson, G. R. Wallwork, Oxid. Met., in press.Google Scholar
  9. 9.
    P. R. S. Jackson, G. R. Wallwork, J. High Temp. Tech. 1:259 (1983).Google Scholar
  10. 10.
    J. P. Sauer, R. A. Rapp, J. P. Hirth, Oxid. Met. 18:285 (1982).CrossRefGoogle Scholar
  11. 11.
    P. R. S. Jackson, W. W. Smeltzer, to be published.Google Scholar
  12. 12.
    D. Bergner, Diffusion of C, N and O in Metals, in: “DIMETA-82, Diffusion in Metals and Alloys,” Proceedings of an International Conference, Tihany, Hungary, 30 Aug. — 3 Sept. 1982, F. J. Kedves, D. L. Beke, ed., Trans. Tech. Publication, Switzerland (1983).Google Scholar
  13. 13.
    S. Mrowec, “Defects and Diffusion in Solids,” Elsevier Scientific Publishing Co., Amsterdam (1980).Google Scholar
  14. 14.
    H. C. Akuezue, D. P. Whittle, Metal. Sci. 17:27 (1983).Google Scholar
  15. 15.
    K. Nishida, T. Yamamoto, T. Nogata, Trans. Japan Inst. Metals 12:310 (1971).Google Scholar
  16. 16.
    W. Gust, M. B. Hintz, A. Lodding, H. Odelius, B. Predel, p. 82 in. Predel, p. 82 in: “Diffusion and Defect Data,” Vol. 25, F. H. Wohlbier, ed., Trans. Tech., Rockport (1981).Google Scholar
  17. 17.
    R. Hultgren, P. Desai, D. Hawkins, M. Gleiser and K. Kelly, “Selected Values of the Thermodynamic Properties of Binary Alloys,” ASM, Metals Park (1973).Google Scholar
  18. 18.
    J. Eldridge, K. L. Kamarek, Trans. Met. Soc. AIME 230:226 (1964).Google Scholar
  19. 19.
    M. Hansen, “Constitution of Binary Alloys,” 2nd ed., McGraw-Hill, New York (1958).Google Scholar
  20. 20.
    W. W. Smeltzer, D. P. Whittle, J. Electrochem. Soc. 125:1116 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • W. W. Smeltzer
    • 1
  • P. R. S. Jackson
    • 1
  • H. A. Ahmed
    • 1
  1. 1.Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations