Skip to main content

The Reactions of Cobalt, Iron and Nickel in SO2 Atmospheres: Similarities and Differences

  • Chapter
Transport in Nonstoichiometric Compounds

Part of the book series: NATO ASI Series ((NSSB,volume 129))

  • 360 Accesses

Abstract

The reactions of cobalt, iron and nickel in SO2 atmospheres are reviewed and compared. A mixed oxide-sulfide product layer is observed in all cases. Cobalt and nickel exhibit similar behavior. The observed rates are near the sulfidation rates, and the reaction rate is strongly influenced by the outward diffusion of metal through an interconnected sulfide network. A continuous interconnected sulfide is not observed in the oxide-sulfide scales formed on iron, and the reaction rates are more difficult to summarize. The differences and similarities among the three metals are explained in terms of the absence of scale-gas equilibrium and the ratio of the metal diffusivity in the corresponding oxide and sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Rosenqvist, J.I.S.I., 176:37 (1954).

    Google Scholar 

  2. D. C. Hilty, W. Crofts, Trans. AIME, 194:1307 (1952).

    Google Scholar 

  3. N. S. Jacobson, W. L. Worrell in Proceedings of the Symposium on High Temperature Materials Chemistry II, Electrochemical Society, Inc., Pennington, pp. 217–223 (1983).

    Google Scholar 

  4. N. S. Jacobson, W. L. Worrell, J. Electrochem. Soc. 131:1182 (1984).

    Article  Google Scholar 

  5. T. Flatley, N. Birks, J.I.S.I., 209:523 (1971).

    Google Scholar 

  6. K. L. Luthra, W. L. Worrell, Met. Trans. 9A:1055 (1978).

    Article  Google Scholar 

  7. W. L. Worrell, B. Ghosal in Proceedings JMIS-3, High Temperature Corrosion, Trans. JIM, Suppl., pp. 419–426 (1983).

    Google Scholar 

  8. V. Guerra-Brady, W. L. Worrell, to be published.

    Google Scholar 

  9. S. Mrowec, T. Werber, Chemia Analityczna 7:605 (1962).

    Google Scholar 

  10. R. H. Condit, R. R. Hobbins, C. E. Birchenall, Oxide Met. 8:409 (1974).

    Article  Google Scholar 

  11. B. D. Bastow, G. C. Wood, Oxide Met. 9:473 (1975).

    Article  Google Scholar 

  12. R. E. Carter, F. D. Richardson, Trans. AIME 200:1244 (1954).

    Google Scholar 

  13. L. Himmel, R. F. Mehl, C. E. Birchenall, Trans. AIME, 197:827 (1953).

    Google Scholar 

  14. K. Fueki, J. B. Wagner, J. Electrochem. Soc. 112:284 (1965).

    Article  Google Scholar 

  15. H. S. Hsu, G. J. Yurek, Oxid. Met. 17:55 (1982).

    Article  Google Scholar 

  16. S. Mrowec, T. Werber, Phys. Met. Metallogr. (Engl. Transl.)8, No. 3, 452 (1959).

    Google Scholar 

  17. E. A. Gulbransen, K. F. Andrew, J. Electrochem. Soc. 101:128 (1954).

    Article  Google Scholar 

  18. L. Czerski, S. Mrowec, T. Werber, J. Electrochem. Soc. 109:273 (1962).

    Article  Google Scholar 

  19. P. Singh, N. Birks, Oxid. Met. 12:23 (1978).

    Article  Google Scholar 

  20. F. Gesmundo, C. deAsmundis in “Behavior of High Temperature Alloys in Aggressive Environments; Proceedings of the International Conference, Petten, The Netherlands, 15–18 October, 1979” pp 435–447, Metals Society, London (1980).

    Google Scholar 

  21. K. Holthe, P. Kofstad, Corros. Sci. 20:919 (1980)

    Article  Google Scholar 

  22. B. Gillot, D. Garnier, Ann. Chim. Fr. 5:483 (1980).

    Google Scholar 

  23. B. Chatterjee, A. D. Dowell, Corros. Sci. 15:637 (1975).

    Article  Google Scholar 

  24. F. Gesmundo, C. de Asmundis, S. Merk, C. Bottino, Werkstoffe and Korrosion, 30:179 (1979).

    Article  Google Scholar 

  25. A. Rahmel, Corros. Sci., 13:125 (1973).

    Article  Google Scholar 

  26. F. C. Yang, D. P. Whittle in Proceedings of the Symposium on Corrosion in Fossil Fuel Systems, The Electrochemical Society, Pennington, 1983, pp 111–129.

    Google Scholar 

  27. C. B. Alcock, M. G. Hocking, S. Zador, Corros. Sci. 9:111 (1969).

    Article  Google Scholar 

  28. M. R. Wootton N. Birks, Corros. Sci. 12:829 (1972).

    Article  Google Scholar 

  29. P. Kofstad, G. F. Akesson, Oxid. Met. 12:503 (1978).

    Article  Google Scholar 

  30. K. L. Luthra, W. L. Worrell, Met. Trans. 10A:621 (1979).

    Article  Google Scholar 

  31. M. Seierstein, P. Kofstad, Corros. Sci. 12:487 (1982).

    Article  Google Scholar 

  32. B. Haflan, P. Kofstad, Corros. Sci. 23:1333 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Jacobson, N.S., Worrell, W.L. (1985). The Reactions of Cobalt, Iron and Nickel in SO2 Atmospheres: Similarities and Differences. In: Simkovich, G., Stubican, V.S. (eds) Transport in Nonstoichiometric Compounds. NATO ASI Series, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2519-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2519-2_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9522-8

  • Online ISBN: 978-1-4613-2519-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics