Experimental Study of Mo03 Electrical Conductivity Changes under Low Oxygen Pressures

  • A. Steinbrunn
  • H. Reteno
  • J. C. Colson
Part of the NATO ASI Series book series (NSSB, volume 129)


Mo03 forms a series of non-stoichiometric oxides on heat treatment in vacuum or in reducing atmospheres, and the departure from stoichiometry is generally associated with the formation of colour centers. The basic mechanism leading to colour center formation has been suggested to be the trapping of electrons at molybdenum (Mo5+) sites in the vicinity of oxygen vacancies. Owing to the simple description of the MoO3 structure (M0O6 octahedra linked by sharing corners) Kihlborg, Magneli, Bursill (1–3) have shown that the suboxides structures can be deduced from that of MoO3 by shear transformations. These latter can explain the discrete values of the composition range MoO3-X such as MonO3n-1 (Mo4O11, Mo5O14…) MonO3n-2 (Mo18O52) and MonO3n-m+1 (Mo17O47).


Oxygen Vacancy Oxygen Pressure Reflexion High Energy Electron Diffraction Relative Conductance Molybdenum Trioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Kihlborg and A. Magneli,Acta Chem. Scand. 9:471 (1955)CrossRefGoogle Scholar
  2. 2.
    L. Kihlborg,Advan. Chem. Ser. 39:37 (1963).CrossRefGoogle Scholar
  3. 3.
    L. A. Bursill,Proc. Roy. Soc. A 311:267 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    W. Thoni and P. B. Hirsch,Phil. Mag. 33:4,639 (1976).Google Scholar
  5. 5.
    P. L. Gai,Phil. Mag. 43: 4, 841 (1981).MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Sayer, A. Mansingh, J. B. Webb and J. Noad,J. Phys. C. Solid State Phys. 11:315 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    P. Stahelin, G. Busch,Helv. Phys. Acta 23:530 (1950).Google Scholar
  8. 8.
    V. A. Ioffe, J. B. Patrina, E. V. Zelenetskaya and V. P. Mikheeva,Phys. Stat. Sol. 35:535 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Khilla, Z. M. Hanafi, B. S. Farag and A. Abu-el-SandThermochemica Acta, 54: 35 (1982).CrossRefGoogle Scholar
  10. 10.
    S. K. Deb and J. A. Chopoorian,J. Appl. Phys. 37:13, 4818 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    S. K. Deb,Proc. Roy Soc. A, 304:211 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    M. R. Tubbs,Phys. Stat. Sol, (a) 21:253 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    R. Juriska,Phys. Stat. Sol.(b), 72:161 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    M. J. Jagadeesh and V. Damodara Das,J. of Non-Crystalline Solids 28:327 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    P. L. Gai,Phil. Mag. A 43:4,841 (1981).CrossRefGoogle Scholar
  16. 16.
    Gmelings Handbuch Mo. Erg. B,, 53: 27.Google Scholar
  17. 17.
    H. Gruber and E. Krautz,Phys. Stat. Sol. a, 62:615 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • A. Steinbrunn
    • 1
  • H. Reteno
    • 1
  • J. C. Colson
    • 1
  1. 1.Laboratoire de Recherches sur la Réactivité des SolidesC.N.R.S. LA 23 — Faculté des Sciences MirandeDijon CedexFrance

Personalised recommendations