Volume, Grain Boundary and Surface Diffusion of an Isotope in some Refractory Oxide Systems: A Comparison

  • V. S. Stubican
Part of the NATO ASI Series book series (NSSB, volume 129)


It is the purpose of this paper to compare some recent results obtained on volume, grain boundary diffusion and surface diffusion of 51Cr in refractory oxides such as MgO, A12O3 and MgA12O4. In these materials the concentration of intrinsic point defects is very small and diffusion transport phenomena are very sensitive to the concentration of aliovalent impurities. However, from the technological point of view the knowledge of transport phenomena in these materials is important to explain sintering, grain growth, mechanical, thermal and electrical properties. To avoid uncontrolled influence of impurities carefully doped materials can be used. The doping with aliovalent ions is particularly interesting because the presence of such ions determines the concentration of point defects and allows experiments to be performed with well defined materials.


Tilt Angle Surface Diffusion Boundary Diffusion Volume Diffusion Tilt Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. W. Weber, W. R. Bitler and V. S. Stubican, J. Phys. Chem. Solids 41:1355 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    V. S. Stubican and J. W. Osenbach, Solid State Ionics 12:375 (1984).CrossRefGoogle Scholar
  3. 3.
    V. S. Stubican, G. Huzinec and D. Damjanovic, J. Am. Ceram. Soc., in press.Google Scholar
  4. 4.
    J. W. Osenbach, Ph.D. Thesis, The Pennsylvania State University, University Park, PA (1982).Google Scholar
  5. 5.
    B. J. Wuensch, W. C. Steel and T. Vasilos, J. Chem. Phys. 58:5258 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    I. K. Lloyd and H. K. Bowen, J. Am. Ceram. Soc. 64:744 (1981).CrossRefGoogle Scholar
  7. 7.
    A. B. Lidiard, “Handbuch der Physik,” S. Fluegge, Ed., Springer Verlag, Berlin (1957).Google Scholar
  8. 8.
    R. A. Perkins, and R. A. Rapp, Met. Trans. 4:193 (1973).CrossRefGoogle Scholar
  9. 9.
    A. M. Glass and T. M. Searly, J. Chem. Phys. 48:1420 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    R. T. Whipple, Phil. Mag. A45:1220 (1954).Google Scholar
  11. 11.
    D. Turbull and R. Hoffmann, Acta Met. 2:419 (1954).CrossRefGoogle Scholar
  12. 12.
    R. E. Hoffman, Acta Met. 4:97 (1956).CrossRefGoogle Scholar
  13. 13.
    I. Herbeuval, M. Biscondi and C. Goux, Mem. Sci. Rev. Met. 70:39 (1973).Google Scholar
  14. 14.
    W. Lange and M. Jurisch, quoted in H. Gleiter and B. Chalmers, Prog. Mater. Sci. 16 (1972).Google Scholar
  15. 15.
    S. R. L. Couling and S. Smoluchowski, J. Appl. Phys. 25:1538 (1954).ADSCrossRefGoogle Scholar
  16. 16.
    See H. P. Bonzel, 1983, in “Surface Mobilities on Solid Materials”, Vu Tieu Binh, Ed., Plenum Press, New York, N.Y.Google Scholar
  17. 17.
    A. Atkinson and R. J. Taylor, Phil, Mag. 43:979 (1981).CrossRefGoogle Scholar
  18. 18.
    J. L. Routbort and H. J. Matzke, J. Am. Ceram. Soc. 58:81 (1975).CrossRefGoogle Scholar
  19. 19.
    M. O. Marlowe and A. I. Kaznoff, J. Nucl. Mater. 25:328 (1968).ADSCrossRefGoogle Scholar
  20. 20.
    S. Y. Zhou and D. R. Olander, Surface Sci. 136:82 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • V. S. Stubican
    • 1
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations