Defect Structure and Transport Properties of the Manganese Oxides Manganosite (Mn1−ΔO) and Hausmannite (Mn3−δO4)

  • Rüdiger Dieckmann
  • Michael Keller
Part of the NATO ASI Series book series (NSSB, volume 129)


The effect of temperature and oxygen partial pressure on the nonstoichiometry of two manganese oxides, manganosite (Mn1−ΔO) and hausmannite (Mn3−δO4), has been studied by thermogravimetry between 900 and 1400°C. It is concluded that cation vacancies and holes are the dominant defect species in manganosite over at least most of its stability range at high temperatures. For the low and also for the high temperature phase of hausmannite it was found that cation vacancies predominate at high oxygen activity, while manganese interstitials are the prevailing point defects at low oxygen activity. The relationships between thedefect structure of manganosite and its transport properties are discussed briefly.


Point Defect Manganese Oxide Cation Vacancy Tracer Diffusion Defect Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Keller and R. Dieckmann, Ber. Bunseges, Phys. Chem. (to be published).Google Scholar
  2. 2.
    M. W. Davies and F. D. Richardson, Trans. Faraday Soc. 55:604 (1959).CrossRefGoogle Scholar
  3. 3.
    A. Z. Hed and D. S. Tannhauser, J. Electrochem. Soc. 114:314 (1967).CrossRefGoogle Scholar
  4. 4.
    A. Z. Hed and D. S. Tannhauser, J. Chem. Phys. 47:2090 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    K. Schwerdtfeger and A. Muan, Trans. AIME 239:1114 (1967).Google Scholar
  6. 6.
    N. G. Schmahl and D. Hennings, Z. Phys. Chem. NF 63:111 (1969).CrossRefGoogle Scholar
  7. 7.
    N. G. Schmahl and D. F. K. Hennings, Arch. Eisenhuttenwes. 40:395 (1969).Google Scholar
  8. 8.
    B. E. F. Fender and F. D. Riley, Thermodynamic Properties of Mn1−xO, in: “Chemistry of Extended Defects in Non-Metallic Solids”, Proc. Advan. Study Inst., Scottsdale, Ariz., 1969 (1970).Google Scholar
  9. 9.
    I. Bransky and N. M. Tallan, J. Electrochem. Soc. 118:788 (1971).CrossRefGoogle Scholar
  10. 10.
    N. G. Eror and J. B. Wagner, J. Electrochem. Soc. 118:1665 (1971).CrossRefGoogle Scholar
  11. 11.
    F. Schaberg, Dissertation TU Clausthal (1973).Google Scholar
  12. 12.
    G. Tromel, W. Fix, K. Koch and F. Schaberg, Erzmetall 29:234 (1976).Google Scholar
  13. 13.
    C. Picard and P. Gerdanian, J. Solid State Chem. 11:190 (1974).ADSCrossRefGoogle Scholar
  14. 14.
    B. Touzelin, These Orsay, Ser. A., n°d’ ordre 1302 (1974).Google Scholar
  15. 15.
    J. Couzin and A. Duquesnoy, C. R. Acad. Sc. Paris, Ser. C 281:259 (1975).Google Scholar
  16. 16.
    K. Terayama, M. Ikeda and M. Taniguchi, Trans. Jap. Inst. Met. 24:24 (1983).Google Scholar
  17. 17.
    P. Kofstad, J. Phys. Chem. Solids 44:129 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    D. G. Muxworthy, “The Defect Properties of Transition Metal Oxides”, UKAEU Dept. No. AERF-TP 665 (1976).Google Scholar
  19. 19.
    C. R. A. Catlow, B. Fender and D. G. Muxworthy, J. Phys. (Paris) Colloq. 7:67 (1977).Google Scholar
  20. 20.
    C. R. A. Catlow and A. M. Stoneham, J. Am. Ceram. Soc. 64:234 (1981).CrossRefGoogle Scholar
  21. 21.
    H. J. DeWit and C.Cerevecoeur, Phys. Lett. 25A:393 (1967).CrossRefGoogle Scholar
  22. 22.
    M. Gvishi, N. M. Tallan and D. S. Tannhauser, Solid State Commun. 6:135 (1968).ADSCrossRefGoogle Scholar
  23. 23.
    T. G. M. Kleinpenning, J. Phys. Chem. Solids 37:925 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    C. Carel, On a New T-P-X Diagram of Manganese Monoxide, in: “Preprints 9th Int. Symp. Reactivity of Solids”, Cracow, Poland, Sept. 1–6, 1980, 420 (1980)Google Scholar
  25. C. Carel, “Reactivity of Solids”, Proc. 9th Int. Symp. React. Solids, Cracow, Poland, Sept. 1–6, 1980, eds. K. Dyrek, J. Haber and J. Nowotny, Elsevier Sci. Publ., Amsterdam and New York, 2:596 (1982).Google Scholar
  26. 25.
    C. Carel, C. R. Acad. Sc. Paris, Ser. II. 295:853 (1982).Google Scholar
  27. 26.
    J. M. Pope and G. Simkovich, J. Electrochem. Soc. 116:292C (1969).Google Scholar
  28. 27.
    P. Kofstad, J. Phys. Chem. Solids 44:879 (1983).ADSCrossRefGoogle Scholar
  29. 28.
    P. Kofstad, Oxid. Met. 19:129 (1983).CrossRefGoogle Scholar
  30. 29.
    H. J. Grabke and I. Wolf, Private Communication (1984).Google Scholar
  31. 30.
    A. Duquesnoy and F. Marion, C. R. Acad. Sc. Paris, Ser. C, 256:2862 (1963).Google Scholar
  32. 31.
    A. Duquesnoy, Rev. Hautes Temp. Refract. 3:201 (1965).Google Scholar
  33. 32.
    J. - J. Oehlig, H. Le Brusq, A. Duquesnoy and F. Marion, C. R. Acad. Sc. Paris, Ser. C, 265:421 (1967).Google Scholar
  34. 33.
    J. - P. Bocquet, M. Kawahara and P. Lacombe, C. R. Acad. Sc. Paris, Ser. C. 265:1318 (1967).Google Scholar
  35. 34.
    H. Le Brusq, J. - J. Oehlig and F. Marion, C. R. Acad. Sc. Paris, Ser. C, 266:965 (1968).Google Scholar
  36. 35.
    M. O’Keeffe and M. Valigi, J. Phys. Chem. Solids 31:947 (1970)CrossRefGoogle Scholar
  37. 36.
    H. Le Brusq and J. - P. Delmaire, Rev. Int. Htes. Temp. Refract. 10:15 (1973).Google Scholar
  38. 37.
    J. B. Price and J. B. Wagner, Jr., J. Electrochem. Soc. 117:242 (1970).CrossRefGoogle Scholar
  39. 38.
    N. L. Peterson and W. K. Chen, J. Phys. Chem. Solids 43:29 (1982).ADSCrossRefGoogle Scholar
  40. 39.
    N. L. Peterson, Private Communication (1983).Google Scholar
  41. 40.
    J. B. Price, Jr. “Chemical and Radiotracer Diffusion in MnO1+x” Ph.D. Thesis, Northwestern University, Evanston, Ill. (1968).Google Scholar
  42. 41.
    P. E. Childs, Diffusion in Chromium-Doped Manganous Oxide, in: “Proc. Thomas Graham Memorial Symposium on Diffusion Processes Glasgow, Scotland, Sept. 22–24, 1969” Gordon and Breach, London 437 (1970).Google Scholar
  43. 42.
    P. E. Childs and J. B. Wagner, Jr., Chemical Diffusion in Wustite and Chromium-Doped Manganous Oxide, in: “Heterogeneous Kinet. Elevated Temp.”, Proc. Int. Conf. Mat. Mater. Sci., Philadelphia, 1969, eds. G. R. Belton and W. L. Worell, Plenum Press, New York 269 (1970).Google Scholar
  44. 43.
    P. E. Childs, L. W. Laub and J. B. Wagner, Jr., Proc. Brit. Ceram. Soc. 19:29 (1971).Google Scholar
  45. 44.
    I. Bransky and N. M. Tallan, A System for the Determination of Oxidation-Reduction Kinetics in Nonstoichiometric Metal Oxides in: “Vacuum Microbalance Techniques”, Plenum Press, New York- 8:29 (1970).Google Scholar
  46. 45.
    J. M. Wimmer, “Chemical Diffusion in Cobalt (II) Oxide, Manganese (II) Oxide and Iron (II) Oxide”, Ph.D. Thesis, Marquette Univ., Milwaukee, Wis. (1972).Google Scholar
  47. 46.
    H. J. Grabke, Private Communication (1983).Google Scholar
  48. 47.
    M. LeBlanc and G. Wehner, Z. Phys. Chem. A 168:59 (1934).Google Scholar
  49. 48.
    C. H. Shomate, J. Am. Chem. Soc. 65:785 (1943).CrossRefGoogle Scholar
  50. 49.
    T. E. Moore, J. Am. Chem. Soc. 72:856 (1950).CrossRefGoogle Scholar
  51. 50.
    W. C. Hahn, Jr and A. Muan, Am. J. Sci. 258:66 (1960).CrossRefGoogle Scholar
  52. 51.
    A. Schmier and G. Sterr, Z. Anorg. Allg. Chem. 346:181 (1966).CrossRefGoogle Scholar
  53. 52.
    M. Keller and R. Kieckmann, Trans. Jap. Inst. Met. 24:650 (1983).Google Scholar
  54. 53.
    M. Keller and R. Kieckmann, Ber. Bunsenges, Phys. Chem. (to be published).Google Scholar
  55. 54.
    R. Dieckmann, Ber. Bunsenges. Phys. Chem. 86:112 (1982).Google Scholar
  56. 55.
    F. C. Romeijn, Philips Res. Rep. 8:304 (1953).Google Scholar
  57. 56.
    E. M. Logothetis and K. Park, Solid State Commun. 16:909 (1975).ADSCrossRefGoogle Scholar
  58. 57.
    R. Meselaar, R. E. J. VanTol and P. Piercy, J. Solid State Chem. 38:335 (1981).ADSCrossRefGoogle Scholar
  59. 58.
    T. O. Mason and H. K. Bowen, J. Am. Ceram. Soc. 64:237 (1981).CrossRefGoogle Scholar
  60. 59.
    R. Dieckmann, C. A. Witt and T. O. Mason, Ber. Bunsenges. Phys. Chem. 87:495 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Rüdiger Dieckmann
    • 1
  • Michael Keller
    • 1
  1. 1.Institute for Physical Chemistry and ElectrochemistryUniversity of HannoverHannover 1Federal Republic of Germany

Personalised recommendations