Skip to main content

Defect Structure and Transport Properties of the Manganese Oxides Manganosite (Mn1−ΔO) and Hausmannite (Mn3−δO4)

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 129))

Abstract

The effect of temperature and oxygen partial pressure on the nonstoichiometry of two manganese oxides, manganosite (Mn1−ΔO) and hausmannite (Mn3−δO4), has been studied by thermogravimetry between 900 and 1400°C. It is concluded that cation vacancies and holes are the dominant defect species in manganosite over at least most of its stability range at high temperatures. For the low and also for the high temperature phase of hausmannite it was found that cation vacancies predominate at high oxygen activity, while manganese interstitials are the prevailing point defects at low oxygen activity. The relationships between thedefect structure of manganosite and its transport properties are discussed briefly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Keller and R. Dieckmann, Ber. Bunseges, Phys. Chem. (to be published).

    Google Scholar 

  2. M. W. Davies and F. D. Richardson, Trans. Faraday Soc. 55:604 (1959).

    Article  Google Scholar 

  3. A. Z. Hed and D. S. Tannhauser, J. Electrochem. Soc. 114:314 (1967).

    Article  Google Scholar 

  4. A. Z. Hed and D. S. Tannhauser, J. Chem. Phys. 47:2090 (1967).

    Article  ADS  Google Scholar 

  5. K. Schwerdtfeger and A. Muan, Trans. AIME 239:1114 (1967).

    Google Scholar 

  6. N. G. Schmahl and D. Hennings, Z. Phys. Chem. NF 63:111 (1969).

    Article  Google Scholar 

  7. N. G. Schmahl and D. F. K. Hennings, Arch. Eisenhuttenwes. 40:395 (1969).

    Google Scholar 

  8. B. E. F. Fender and F. D. Riley, Thermodynamic Properties of Mn1−xO, in: “Chemistry of Extended Defects in Non-Metallic Solids”, Proc. Advan. Study Inst., Scottsdale, Ariz., 1969 (1970).

    Google Scholar 

  9. I. Bransky and N. M. Tallan, J. Electrochem. Soc. 118:788 (1971).

    Article  Google Scholar 

  10. N. G. Eror and J. B. Wagner, J. Electrochem. Soc. 118:1665 (1971).

    Article  Google Scholar 

  11. F. Schaberg, Dissertation TU Clausthal (1973).

    Google Scholar 

  12. G. Tromel, W. Fix, K. Koch and F. Schaberg, Erzmetall 29:234 (1976).

    Google Scholar 

  13. C. Picard and P. Gerdanian, J. Solid State Chem. 11:190 (1974).

    Article  ADS  Google Scholar 

  14. B. Touzelin, These Orsay, Ser. A., n°d’ ordre 1302 (1974).

    Google Scholar 

  15. J. Couzin and A. Duquesnoy, C. R. Acad. Sc. Paris, Ser. C 281:259 (1975).

    Google Scholar 

  16. K. Terayama, M. Ikeda and M. Taniguchi, Trans. Jap. Inst. Met. 24:24 (1983).

    Google Scholar 

  17. P. Kofstad, J. Phys. Chem. Solids 44:129 (1983).

    Article  ADS  Google Scholar 

  18. D. G. Muxworthy, “The Defect Properties of Transition Metal Oxides”, UKAEU Dept. No. AERF-TP 665 (1976).

    Google Scholar 

  19. C. R. A. Catlow, B. Fender and D. G. Muxworthy, J. Phys. (Paris) Colloq. 7:67 (1977).

    Google Scholar 

  20. C. R. A. Catlow and A. M. Stoneham, J. Am. Ceram. Soc. 64:234 (1981).

    Article  Google Scholar 

  21. H. J. DeWit and C.Cerevecoeur, Phys. Lett. 25A:393 (1967).

    Article  Google Scholar 

  22. M. Gvishi, N. M. Tallan and D. S. Tannhauser, Solid State Commun. 6:135 (1968).

    Article  ADS  Google Scholar 

  23. T. G. M. Kleinpenning, J. Phys. Chem. Solids 37:925 (1976).

    Article  ADS  Google Scholar 

  24. C. Carel, On a New T-P-X Diagram of Manganese Monoxide, in: “Preprints 9th Int. Symp. Reactivity of Solids”, Cracow, Poland, Sept. 1–6, 1980, 420 (1980)

    Google Scholar 

  25. C. Carel, “Reactivity of Solids”, Proc. 9th Int. Symp. React. Solids, Cracow, Poland, Sept. 1–6, 1980, eds. K. Dyrek, J. Haber and J. Nowotny, Elsevier Sci. Publ., Amsterdam and New York, 2:596 (1982).

    Google Scholar 

  26. C. Carel, C. R. Acad. Sc. Paris, Ser. II. 295:853 (1982).

    Google Scholar 

  27. J. M. Pope and G. Simkovich, J. Electrochem. Soc. 116:292C (1969).

    Google Scholar 

  28. P. Kofstad, J. Phys. Chem. Solids 44:879 (1983).

    Article  ADS  Google Scholar 

  29. P. Kofstad, Oxid. Met. 19:129 (1983).

    Article  Google Scholar 

  30. H. J. Grabke and I. Wolf, Private Communication (1984).

    Google Scholar 

  31. A. Duquesnoy and F. Marion, C. R. Acad. Sc. Paris, Ser. C, 256:2862 (1963).

    Google Scholar 

  32. A. Duquesnoy, Rev. Hautes Temp. Refract. 3:201 (1965).

    Google Scholar 

  33. J. - J. Oehlig, H. Le Brusq, A. Duquesnoy and F. Marion, C. R. Acad. Sc. Paris, Ser. C, 265:421 (1967).

    Google Scholar 

  34. J. - P. Bocquet, M. Kawahara and P. Lacombe, C. R. Acad. Sc. Paris, Ser. C. 265:1318 (1967).

    Google Scholar 

  35. H. Le Brusq, J. - J. Oehlig and F. Marion, C. R. Acad. Sc. Paris, Ser. C, 266:965 (1968).

    Google Scholar 

  36. M. O’Keeffe and M. Valigi, J. Phys. Chem. Solids 31:947 (1970)

    Article  Google Scholar 

  37. H. Le Brusq and J. - P. Delmaire, Rev. Int. Htes. Temp. Refract. 10:15 (1973).

    Google Scholar 

  38. J. B. Price and J. B. Wagner, Jr., J. Electrochem. Soc. 117:242 (1970).

    Article  Google Scholar 

  39. N. L. Peterson and W. K. Chen, J. Phys. Chem. Solids 43:29 (1982).

    Article  ADS  Google Scholar 

  40. N. L. Peterson, Private Communication (1983).

    Google Scholar 

  41. J. B. Price, Jr. “Chemical and Radiotracer Diffusion in MnO1+x” Ph.D. Thesis, Northwestern University, Evanston, Ill. (1968).

    Google Scholar 

  42. P. E. Childs, Diffusion in Chromium-Doped Manganous Oxide, in: “Proc. Thomas Graham Memorial Symposium on Diffusion Processes Glasgow, Scotland, Sept. 22–24, 1969” Gordon and Breach, London 437 (1970).

    Google Scholar 

  43. P. E. Childs and J. B. Wagner, Jr., Chemical Diffusion in Wustite and Chromium-Doped Manganous Oxide, in: “Heterogeneous Kinet. Elevated Temp.”, Proc. Int. Conf. Mat. Mater. Sci., Philadelphia, 1969, eds. G. R. Belton and W. L. Worell, Plenum Press, New York 269 (1970).

    Google Scholar 

  44. P. E. Childs, L. W. Laub and J. B. Wagner, Jr., Proc. Brit. Ceram. Soc. 19:29 (1971).

    Google Scholar 

  45. I. Bransky and N. M. Tallan, A System for the Determination of Oxidation-Reduction Kinetics in Nonstoichiometric Metal Oxides in: “Vacuum Microbalance Techniques”, Plenum Press, New York- 8:29 (1970).

    Google Scholar 

  46. J. M. Wimmer, “Chemical Diffusion in Cobalt (II) Oxide, Manganese (II) Oxide and Iron (II) Oxide”, Ph.D. Thesis, Marquette Univ., Milwaukee, Wis. (1972).

    Google Scholar 

  47. H. J. Grabke, Private Communication (1983).

    Google Scholar 

  48. M. LeBlanc and G. Wehner, Z. Phys. Chem. A 168:59 (1934).

    Google Scholar 

  49. C. H. Shomate, J. Am. Chem. Soc. 65:785 (1943).

    Article  Google Scholar 

  50. T. E. Moore, J. Am. Chem. Soc. 72:856 (1950).

    Article  Google Scholar 

  51. W. C. Hahn, Jr and A. Muan, Am. J. Sci. 258:66 (1960).

    Article  Google Scholar 

  52. A. Schmier and G. Sterr, Z. Anorg. Allg. Chem. 346:181 (1966).

    Article  Google Scholar 

  53. M. Keller and R. Kieckmann, Trans. Jap. Inst. Met. 24:650 (1983).

    Google Scholar 

  54. M. Keller and R. Kieckmann, Ber. Bunsenges, Phys. Chem. (to be published).

    Google Scholar 

  55. R. Dieckmann, Ber. Bunsenges. Phys. Chem. 86:112 (1982).

    Google Scholar 

  56. F. C. Romeijn, Philips Res. Rep. 8:304 (1953).

    Google Scholar 

  57. E. M. Logothetis and K. Park, Solid State Commun. 16:909 (1975).

    Article  ADS  Google Scholar 

  58. R. Meselaar, R. E. J. VanTol and P. Piercy, J. Solid State Chem. 38:335 (1981).

    Article  ADS  Google Scholar 

  59. T. O. Mason and H. K. Bowen, J. Am. Ceram. Soc. 64:237 (1981).

    Article  Google Scholar 

  60. R. Dieckmann, C. A. Witt and T. O. Mason, Ber. Bunsenges. Phys. Chem. 87:495 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Dieckmann, R., Keller, M. (1985). Defect Structure and Transport Properties of the Manganese Oxides Manganosite (Mn1−ΔO) and Hausmannite (Mn3−δO4). In: Simkovich, G., Stubican, V.S. (eds) Transport in Nonstoichiometric Compounds. NATO ASI Series, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2519-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2519-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9522-8

  • Online ISBN: 978-1-4613-2519-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics