Advertisement

Mechanisms of Impurity Diffusion in Rutile

  • N. L. Peterson
  • J. Sasaki
Part of the NATO ASI Series book series (NSSB, volume 129)

Abstract

Tracer diffusion of 46Sc, 5lCr, 54Mn, 59Fe, 60Co, 63Ni, and 95Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions.

Keywords

Oxygen Partial Pressure Open Channel Tracer Diffusion Impurity Diffusion Large Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Akse and H. B. Whitehurst, J. Phys. Chem. Solids 39:457 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    P. Kofstad, J. Less-Common Metals 13:635 (1967).CrossRefGoogle Scholar
  3. 3.
    P. Kofstad, J. Phys. Chem. Solids 23:1579 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    K. S. Førland, Acta Chem. Scand. 18:1267 (1964).CrossRefGoogle Scholar
  5. 5.
    J. B. Moser, R. N. Blumenthal, and D. H. Whitmore, J. Am. Ceram. Soc. 48:384 (1965).CrossRefGoogle Scholar
  6. 6.
    R. T. Dirstine and C. J. Rosa, Z. Metallkde 70:322 (1979).ADSGoogle Scholar
  7. 7.
    J.-F. Marucco, J. Gantron, and P. Lemasson, J. Phys. Chem. Solids 42:363 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    R. N. Blumenthal and D. H. Whitmore, J. Electrochem. Soc. 110:92 (1963).CrossRefGoogle Scholar
  9. 9.
    C. B. Alcock, S. Zador, and B. C. H. Steele, “Electromotive Force Measurements in High Temperature Systems” ( Institute of Mining and Metallurgy, London, 1968 ), pp. 231–45.Google Scholar
  10. 10.
    A. Koztowska-Rog, S. Kozinski, and G. Rog., Rocz. Chem. 50:2153 (1976).Google Scholar
  11. 11.
    D. S. Tannhauser, Solid State Commun. 1:223 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    R. N. Blumenthal, J. Coburn, J. Bankus, and W. M. Hirthe, J. Phys. Chem. Solids 27:643 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    J. F. Baumard, D. Panis, and A. M. Anthony, J. Solid State Chem. 20:43 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    G. Levin and C. J. Rosa, Z. Metallkde. 70:646 (1979).Google Scholar
  15. 15.
    E. Yagi, A. Koyama, H. Sakairi, and R. R. Hasiguti, J. Phys. Soc. Japan 42:939 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    J. Sasaki and N. L. Peterson, to be published.Google Scholar
  17. 17.
    T. S. Lundy and W. A. Coghlan, J. Phys. (Paris), Colloq. 24:C9–299 (1972).Google Scholar
  18. 18.
    R. Haul and G. Dümbgen, J. Phys. Chem. Solids 26:1 (1965).ADSCrossRefGoogle Scholar
  19. 19.
    M. Arita, M. Hosoya, M. Kobayashi, and M. Someno, J. Am. Ceram. Soc. 62:443 (1979).CrossRefGoogle Scholar
  20. 20.
    E. Iguchi and K. Yajima, J. Phys. Soc. Japan 32:1415 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    O. W. Johnson, Phys. Rev. 136:A284 (1964).ADSCrossRefGoogle Scholar
  22. 22.
    O. W. Johnson, S. H. Paek, and J. W. Deford, J. Appl. Phys. 46:1026 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    K. Hoshino and N. L. Peterson, to be published.Google Scholar
  24. 24.
    J. Yahia, J. Phys. Rev. 130:1711 (1963),ADSCrossRefGoogle Scholar
  25. 25.
    V. J. Rudolph, Z. Naturforschg. 14a:727 (1959).ADSGoogle Scholar
  26. 26.
    R. D. Shannon and C. T. Prewitt, Acta Cryst. B25:925 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • N. L. Peterson
    • 1
  • J. Sasaki
    • 1
  1. 1.Materials Science and Technology DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations