Chemical Diffusion in CoO

  • Janusz Nowotny
  • Andrzej Sadowski
Part of the NATO ASI Series book series (NSSB, volume 129)


The available experimental data for the chemical diffusion in CoO1–12 can be grouped according to the reported dependence of \(\tilde D\) on \({P_{{O_2}}}\) and the slope of log \(\tilde D\) vs. 1/T (Table I). The character of the dependence of \(\tilde D\) vs. \({P_{{O_2}}}\) is important for understanding the nature of interactions between diffusing defects. When defects form an ideal solution in the lattice with neglegible interactions, i. e. undoped NiO13, then \(\tilde D\) should be essentially independent of defect concentration and \({P_{{O_2}}}\). This type of behavior has been reported for CoO by Mrowec et al.4, Wimmer et al.5, Chadzhieva et al.8 and Chowdhry and Coble9. However, Morin and Dieckmann6,10 and Petot-Ervas et al.l,12 have observed changes in \(\tilde D\) with \({P_{{O_2}}}\) which are consistent with strong interactions between defects in CoO7,15–17.


Activation Energy Diffusion Data Defect Concentration Cation Vacancy Chemical Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Price and J. B. Wagner, Jr., Z. Physik. Chem., Neue Folge 49: 257 (1966).CrossRefGoogle Scholar
  2. 2.
    H. Meurer, Thesis, Clausal University, (1970).Google Scholar
  3. 3.
    G. J. Koel and P. J. Gellings, Oxid. Metals 5: 185 (1972).CrossRefGoogle Scholar
  4. 4.
    E. Fryt, S. Mrowec and T. Walec, Oxid. Metals 7: 117 (1973).CrossRefGoogle Scholar
  5. 5.
    J. M. Wimmer, R. N. Blumenthal and I. Bransky, J. Phys. Chem. Solids 36: 269 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    F. Morin, Canad. Metallurg. Quart., 14: 105 (1975).Google Scholar
  7. 7.
    R. Dieckmann, Z. Physik. Chem., Neue Folge 107: 189 (1977).CrossRefGoogle Scholar
  8. 8.
    M. Chadzhieva, Ph.D. Thesis, Academy of Mining and Metallurgy, Krakow (1980).Google Scholar
  9. 9.
    U. Chowdhry and R. L. Coble,J. Am. Ceram. Soc 65: 336 (1982).CrossRefGoogle Scholar
  10. 10.
    F. Morin and R. Dieckmann, Z. Physik. Chem., Neue Folge 129: 219 (1982).CrossRefGoogle Scholar
  11. 11.
    G. Petot-Ervas, O. Radji, B. Sossa and P. Ochin, Radiation Effects 75: 301 (1983).CrossRefGoogle Scholar
  12. 12.
    G. Petot-Ervas, Lecture presented on January, 1983 at the Institute of Metallurgy, Academy of Mining and Metallurgy, Krakow.Google Scholar
  13. 13.
    S. Mrowec, Ceram. Intern 4: 47 (1978).CrossRefGoogle Scholar
  14. 14.
    J. Nowotny and A. Sadowski, J. Am. Ceram. Soc 62: 24 (1979).CrossRefGoogle Scholar
  15. 15.
    H.-C. Chen and T. O. Mason, J. Am. Ceram. Soc64:C-130 (1981)CrossRefGoogle Scholar
  16. 16.
    F. Gesmundo and F. Viani, J. Electrochem. Soc 128: 460 (1981).CrossRefGoogle Scholar
  17. 17.
    J. Nowotny, M. Rekas and I. Sikora, J. Electrochem. Soc 131: 94 (1984).CrossRefGoogle Scholar
  18. 18.
    J. Nowotny, I. Sikora and J. B. Wagner, Jr., Proc. 9th Intern. Symp. Reactivity of Solids, Elsevier, Amsterdam, (1982) p. 225.Google Scholar
  19. 19.
    B. Fisher and J. B. Wagner, Jr., Physics Letters, 21: 606 (1966)ADSCrossRefGoogle Scholar
  20. 20.
    A. B. Newman, Trans. Am. Inst. Chem. Eng 27: 203 (1931).Google Scholar
  21. 21.
    B. Fisher and D. S. Tannhauser, J. Chem. Phys 44: 1663 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    J. Nowotny, J. B. Wagner, Jr., Oxid. Metals 15: 169 (1981).CrossRefGoogle Scholar
  23. 23.
    Z. Adamczyk, J. Nowotny, submitted to J. Electrochem. Soc Google Scholar
  24. 24.
    J. Nowotny, I. Sikota and J. B. Wagner, Jr., J. Am. Ceram. Soc 65: 192 (1982).CrossRefGoogle Scholar
  25. 25.
    H. Rickert and W. Weppner, Z. Naturforsch 29A: 1849 (1974).ADSGoogle Scholar
  26. 26.
    C. R. A. Catlow, B. Fender and D. G. Muxworthy, J. Phys. (Paris) C7: 67 (1977).Google Scholar
  27. 27.
    J. Haber, J. Stoch and L. Ungier, J. Electron Spectroscopy 9: 459 (1976).CrossRefGoogle Scholar
  28. 28.
    J. Nowotny, J. Mater. Sci 12: 1143 (1977).ADSCrossRefGoogle Scholar
  29. 29.
    S. Mrowec and K. Przybylski, Rev. Int. Htes. Temp, et Refract 14: 285 (1977).Google Scholar
  30. 30.
    W. K. Chen, N. L. Peterson and W. T. Reeves, Phys. Rev 186: 887 (1969).ADSCrossRefGoogle Scholar
  31. 31.
    N. G. Eror and J. B. Wagner, Jr., J. Phys. Chem. Solids 29: 1597 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    I. Bransky and J. M. Wimmer, J. Phys. Chem. Solids 33: 801 (1972).ADSCrossRefGoogle Scholar
  33. 33.
    W. Komatsu, Y. Chida and T. Maruyama, Proc. 9th Intern. Symp. Reactivity of Solids, Elsevier, Amsterdam (1982) p. 430.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Janusz Nowotny
    • 1
  • Andrzej Sadowski
    • 2
  1. 1.Institute of Catalysis and Surface ChemistryPolish Academy of SciencesKrakowPoland
  2. 2.Institute of Metallurgy Academy of Mining and MetallurgyKrakowPoland

Personalised recommendations