Oxygen Self-Diffusion in Cubic ZrO2 Solid Solutions

  • Yasumichi Oishi
  • Ken Ando
Part of the NATO ASI Series book series (NSSB, volume 129)


Because of the interest in their application to solid electrolyte, electrical conductivity has been extensively determined for various stabilized ZrO2 by many investigators. In contrast, direct determination of the oxygen tracer diffusion coefficient has been made only for CaO-stabilized ZrO2 by Kingery et al. (1959) and later by Simpson and Carter (1966). Agreement of the oxygen self-diffusion coefficient with the electrical conductivity determined by Kingery et al. proved that CaO-stabilized ZrO2 is an oxygen ionic conductor due to the temperature-independent oxygen vacancies resultant from substitution of divalent Ca ions for Zr ions in the fluorite structure. The determined activation energy, 127 kJ/mol, was interpreted to be the migration energy for the oxygen ion.


Oxygen Vacancy Oxygen Diffusivity Migration Energy High Temperature Dependence Defect Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Ando, Y. Oishi and Y. Hidaka, J. Chem. Phys. 65: 2751 (1976).ADSCrossRefGoogle Scholar
  2. K. Ando, Y. Oishi, H. Koizumi and Y. Sakka, J. Mat. Sci. Let., to be published (1984).Google Scholar
  3. A. S. Bayoglu and R. Lorenzelli, J. Nucl. Mat. 82: 403 (1979).ADSCrossRefGoogle Scholar
  4. V. Butler, C. R. A. Catlow and B. E. F. Fender, Solid State Ionics 5: 539 (1981).CrossRefGoogle Scholar
  5. V. Butler, C. R. A. Catlow and B. E. F. Fender, Radiation Effect 73: 273 (1983).CrossRefGoogle Scholar
  6. R. E. W. Casselton, Phys. Stat. Sol. (a)22:571 (1970).ADSCrossRefGoogle Scholar
  7. C. R. A. Catlow and A. B. Lidiard, Theoretical Studies of Point-Defect Properties of Uranium Dioxide, IAEA Symposium on the Thermodynamics of Nuclear Materials, Vienna, Oct. 190 /13: 27 (1974).Google Scholar
  8. E. A. Colbourn and W. C. Mackrodt, J. Nucl. Mat. 118: 50 (1983).ADSCrossRefGoogle Scholar
  9. A. M. Diness and R. Roy, Solid State Comm. 3: 123 (1965).ADSCrossRefGoogle Scholar
  10. P. Duwez, F. Odell, and F. H. Brown, Jr., J. Am. Ceram. Soc. 35: 107 (1952).CrossRefGoogle Scholar
  11. J. M. Floyd, Indian J. Technol. 11: 589 (1973).Google Scholar
  12. C. F. Grain, J. Am. Ceram. Soc. 50: 288 (1967).CrossRefGoogle Scholar
  13. J. R. Hellmann and V. S. Stubican, J. Am. Ceram. Soc., 66: 260 (1983).CrossRefGoogle Scholar
  14. A. Hoffmann and W. A. Fisher, Z. Phys. Chem. 35: 95 (1962).CrossRefGoogle Scholar
  15. D. K. Hohnke, Ionic Conduction in Doped Zirconia, in Fast Ion Trans-port in Solids, Eds., Vashishta, P., J. N. Mundy and G. K.Shenoy, North-Holland, pp. 669.Google Scholar
  16. K. C. Kim and D. R. Olander, J. Nucl. Matl. 102: 192 (1981).ADSCrossRefGoogle Scholar
  17. W. D. Kingery, J. Pappis, M. E. Doty and D. C. Hill, J. Am. Ceram. Soc. 42: 393 (1959).CrossRefGoogle Scholar
  18. S. Kobayashi, Yogyo-Kyokai-Shi 89:14.Google Scholar
  19. Y. Oishi, K. Ando and Y. Sakka, Lattice and Grain-Boundary Diffusion Coefficients of Cations in Stabilized Zirconias, Advances in Ceramics, Vol. 7, Additives and Interfaces in Electronic Ceramics, Eds., M. F. Yan and A. H. Heuer, pp. 208 (1983).Google Scholar
  20. Y. Sakka, Y. Oishi and K. Ando, Bull. Chem. Soc. Jpn. 55: 420 (1982).CrossRefGoogle Scholar
  21. L. A. Simpson and R. E. Carter, J. Am. Ceram. Soc. 49: 139 (1966).CrossRefGoogle Scholar
  22. T. G. Stratton, D. Reed and H. L. Tuller, Study of Boundary Effects in Stabilized Zirconia Electrolytes, Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, Ed., L. M. Levinson, pp. 114 (1981).Google Scholar
  23. D. W. Strickler and W. G. Carlson, J. Am. Ceram. Soc., 48:286 (1965).CrossRefGoogle Scholar
  24. Y. Suzuki, private communication (1983).Google Scholar
  25. T. Y. Tien and E. C. Subbarao, J. Chem. Phys., 39: 1041 (1963).ADSCrossRefGoogle Scholar
  26. A. N. Vlasov, Elektrokhimiya 19: 1624 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Yasumichi Oishi
    • 2
  • Ken Ando
    • 1
  1. 1.Department of Nuclear Engineering Faculty of EngineeringKyushu UniversityFukuokaJapan
  2. 2.R & D LaboratoriesNGK Insulators, Ltd.NagoyaJapan

Personalised recommendations