Fluctuation Kinetics and the Mott Hopping

  • M. Y. Azbel
Part of the Institute for Amorphous Studies Series book series (IASS)


This paper discusses the properties of systems whose transport is dominated by a single quenched fluctuation. The Lee oscillations in the Matt hopping are specifically considered.


Inelastic Scattering Localization Length Resonant Tunneling Impure Metal Current Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.B. Fowler, A. Hartstein, R.A. Webb, Phys. Rev. Lett. 48: 196 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Phys. Rev. Lett. 52: 228 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    J.H. Claassen, S.A. Wolf, C. Leemann, J.H. Elliot, R. Orb ach, Proc. Intern. Confer. on Localization, Interaction and Transport Phenomena in Impure Metals, Braunschweig, 1984, p. 11.Google Scholar
  4. 4.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42:673 (1979)Google Scholar
  5. P.W. Anderson, D.J. Thouless, E. Abrahams, D. S. Fisher, Phys. Rev. B22:3519 (1980)MathSciNetADSCrossRefGoogle Scholar
  6. P.W. Anderson, Phys. Rev. B23: 4828 (1981)ADSGoogle Scholar
  7. 5.
    B.S. Anderek, E. Abrahams, J. Phys. C13:L383 (1980ADSGoogle Scholar
  8. E.N.Economou and C.M. Soukoulis, Phys. Rev. Lett. 46:618 (1981)ADSCrossRefGoogle Scholar
  9. C.M. Soukoulis and E.N. Economou, Sol. St. Comm. 37: 409 (1981).ADSCrossRefGoogle Scholar
  10. 6.
    M.Ya. Azbel, Sol. St. Comm. 45: 527 (1983).ADSCrossRefGoogle Scholar
  11. 7.
    M.Ya. Azbel, D.P. Di Vincenzo, Sol. St. Comm. 49:949 (1984), and Phys. Rev. B, to be published.ADSCrossRefGoogle Scholar
  12. 8.
    M.Ya. Azbel, P. Soven, Phys. Rev. B27:831 (1983).ADSGoogle Scholar
  13. see also I.M. Lifshitz, V.Ya. Kirpichenkov, Sov. Phys. JETP 50: 499 (1979)ADSGoogle Scholar
  14. 9.
    M.Ya. Azbel, A. Hartstein, D.P. Di Vincenzo, Phys. Rev. Lett. 52:1641 (1984)ADSCrossRefGoogle Scholar
  15. see also R.F. Kwasnick, M.A. Kastner, J. Melngailis, P.A. Lee, Phys. Rev. Lett. 52: 224 (1984)ADSCrossRefGoogle Scholar
  16. 10.
    M.Ya. Azbel, Topics in Solid State Physics, Springer-Verlag, 1985.Google Scholar
  17. 11.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Solids, Oxford University Press, Oxford, 1971.Google Scholar
  18. 12.
    A.B. Fowler, A. Hartstein, R.A. Webb, Physica 117B-118B:661 (1983)Google Scholar
  19. A. Hartstein, R.A. Webb, A.B. Fowler, J.J. Wainer, Surf. Science, 142, 1(1984)ADSCrossRefGoogle Scholar
  20. R. A. Webb, A. Hartstein, J. J. Wainer and A. B. Fowler, to be published.Google Scholar
  21. 13.
    P. A. Lee, Phys. Rev. Le tt. 53, 2042 (1984). The relation between the Lee oscillation and the Breit-Wainer formula, accounting for both elastic and inelastic scattering, was presented by P. Lee, A. D. Stone, preprint.ADSCrossRefGoogle Scholar
  22. 14.
    M. Buttiker, L. Landauer, Phys. Rev. Lett. 49:1739 (1982)ADSCrossRefGoogle Scholar
  23. and K.W.H. Stevens, J. Phys. C16:3649 (1983); C17: 5735 (1984)ADSGoogle Scholar
  24. A.D. Stone, M.Ya. Azbel, P.A. Lee, to be publishedGoogle Scholar
  25. see also Y. Gef en, G. Schon, to be published.Google Scholar
  26. 16.
    W.E. Howard, F.F. Fang, Solid State Electronics 8:82 (1965)ADSCrossRefGoogle Scholar
  27. J.A. Pals, W.J.J.A. Van Heck, Appl. Phys. Letters 23:550 (1973)ADSCrossRefGoogle Scholar
  28. J.M. Voschenko, J.N. Zemel, Phys. Rev. B9:4410 (1974)ADSGoogle Scholar
  29. R.J. Tidey, R.A. Stradling, M. Pepper, J. of Phys. C7:L353 (1974)Google Scholar
  30. G. Voland, K. Pagnia, Appl. Phys. 8:211 (1979)ADSCrossRefGoogle Scholar
  31. M. Pepper, J. Phys. C12:L617 (1979)ADSGoogle Scholar
  32. Phil. Mag. B42:947 (1980)Google Scholar
  33. Surf. Phys. 98:L218 (1980)Google Scholar
  34. M. Pepper, M.J. Wren, R.E. Oakley, J. Phys. C12:L897(1979)ADSGoogle Scholar
  35. M. Pepper, M.J. Wren, J. Phys. C15:L617 (1982)ADSGoogle Scholar
  36. W.J. Skocpol, L.D Jackel, E.L. Hu, R.E. Howard, L.A. Fetter, Phys. Rev. Lett. 49:951 (1982)ADSCrossRefGoogle Scholar
  37. R.G. Wheeler K.K. Choi, A. Goel, R. Wisnieff, D.E. Prober, Phys. Rev. Lett. 49: 1674 (1982).ADSCrossRefGoogle Scholar
  38. 17.
    R.F. Voss, J. Phys. C11: L923 (1978).ADSGoogle Scholar
  39. 18.
    M. Pollak, I. Riess, J. Phys. C9:2339 (1976)ADSGoogle Scholar
  40. and B.I. Shklovskii, Sov. Phys. Semicond. 10: 855 (1976).Google Scholar
  41. 18a.
    P.H. Woerler, G.A.M. Hurkx, Proc. Intern. Confer. on Localization, Interaction and Transport Phenomena in Impure Metals, Braunschweig, 1984, p. 34.Google Scholar
  42. 19.
    B. Ricco, M.Ya. Azbel, Phys. Rev. 51:1795 (1983)ADSGoogle Scholar
  43. and B. Ricco, M.Ya. Azbel, Phys. Rev. B29: 1970, 4356 (1984).ADSGoogle Scholar
  44. 20.
    R. Maynard, E. Akkermans, Phys. Rev. Lett., to be published.Google Scholar
  45. 21.
    M.Ya. Azbel, Phys. Rev. B28: 4106 (1983).ADSCrossRefGoogle Scholar
  46. 22.
    J.B. Pendry, J. Phys. C16:3493 (1983)MathSciNetGoogle Scholar
  47. and U. Fris ch, J. -L. Gautero, to be published.Google Scholar
  48. 23.
    E. Guazzelli, E. Guyon, J. Physique-Lettres 44: L837 (1983).CrossRefGoogle Scholar
  49. 24.
    M.E. Cage, R.F. Dziuba, B.F. Field, E.R. Williams, Phys. Rev. Lett. 51: 1374 (1983).ADSCrossRefGoogle Scholar
  50. 24a.
    a. R.A. Webb, S. Washburg, C.P. Umbach, and R.B. Laibowitz, Proc. Intern. Confer. on Localization, Interaction and Transport Phenomena in Impure Metals, Braunschweig, 1984, p. 119.Google Scholar
  51. 25.
    A. Miller and E. Abrahams, Phys. Rev. 120:745 (1960)ADSMATHCrossRefGoogle Scholar
  52. and V. Ambegaokar, B.I. Halperin, and J.S. Langer, Phys. Rev. B4: 2612 (1971).ADSGoogle Scholar
  53. 26.
    M.Ya. Azbel, Sol. St. Comm. 43: 515 (1982).ADSCrossRefGoogle Scholar
  54. 27.
    This reasoning is immediately generalized to the hopping between the n-th and q adjacent states. Then \({{j}_{{n{\kern 1pt} }}} = {\mkern 1mu} \sum\limits_{{m = 1}}^{q} {\sum\limits_{{p = 0}}^{{m - 1}} {{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} ({{\rho }_{{n - p}}}{\mkern 1mu} {{w}_{{n - p,n + m - p{\kern 1pt} }}}{\mkern 1mu} - {{\rho }_{{n + m - p{\kern 1pt} }}}} {{w}_{{n + m - p,n - p}}}).} \) Google Scholar
  55. 28.
    J. Kurkijarvi, Phys. Rev. B8: 922 (1973).ADSCrossRefGoogle Scholar
  56. 29.
    W. Brenig, G.H. Dohleradn H. Heyszenau, Phil. Mag. 27: 1093 (1973).ADSCrossRefGoogle Scholar
  57. 30.
    At very low temperatures T < Te = T1 (Lo/L)2, when L < Λ, one hop covers the whole length, and again the Mott ℓnRαT-1. However, at such temperatures, inelastic scattering becomes unimportant, and resonant tunneling daminates.7,13 Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Y. Azbel
    • 1
  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel AvivIsrael

Personalised recommendations