Skip to main content

Are we Beginning to Understand the Vibrational Anomalies of Glasses?

  • Chapter
Physics of Disordered Materials

Part of the book series: Institute for Amorphous Studies Series ((IASS))

Abstract

In perfect, crystalline solids, the thermal motion of the atoms can be described through elastic waves, i.e. collective excitations. The Debye continuum model has been a good approximation in the long wavelength limit. It predicts, on the basis of a proper average of the measured speeds of sound, a low temperature specific heat proportional to the third power of the temperature, which is in excellent agreement with the experimental results in the temperature range below one percent of the Debye temperature even in rather complex crystal lattices. In all amorphous solids, however, i.e. solids lacking long range order, such an agreement has not been found. The discrepancy is, in fact, most pronounced in the low temperature range, where the specific heat is found to vary approximately as the first power of the temperature. The prefactor of the linear specific heat term lies typically in the range of 5 to 50 erg g-1 K-2, and appears to be independent of the microscopic structure of the glass or its bonding type.1 Figs. 1 and 2 show two examples. The covalently bonded amorphous Si02 was slowly cooled from the melt,2 while the metallically bonded amorphous Bi-Sb layer was produced by quenched condensation,3 in which process the atoms were evaporated onto a substrate which was held below 20 K. In both solids, the linear term of the specific heat anomaly has almost the same magnitude; for the amorphous Si02, it is 12 erg g-1 K-2 T, for the amorphous superconductor, it is 13 erg g-1 K-2 T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. O. Pohl, in Amorphous Solids: Low Temperature Properties, Topics in Current Physics, Vol. 24, Springer Yerlag, Berlin 1981; W. A. Phillips, ed., p. 27.

    Google Scholar 

  2. R. C. Zeller and R. O. Pohl, Phys. Rev. B4, 2029 (1971).

    ADS  Google Scholar 

  3. G. Kampf, H. Selisky, and W. Buckel, Physica 108B, 1263 (1981), and H. Selisky, Ph.D Thesis, Karlsruhe University, 1979, unpublished.

    Google Scholar 

  4. S. Hunklinger and W. Arnold: In Physical Acoustics, ed. by W. P. Mason and R. N. Thurston ( Academic Press, New York 1976 ), Vol. XII, p. 155.

    Google Scholar 

  5. Amorphous Solids: Low Temperature Properties, W. A. Phillips, ed. (Springer, Berlin, 1981).

    Google Scholar 

  6. S. Hunklinger, in Phonon Scattering in Condensed Matter, Solid State Sciences 51, W. Eisenmenger, K. Lassmann, and S. Döttinger, eds., ( Springer, Berlin, 1984 ), p. 378.

    Google Scholar 

  7. J. L. Black in Glassy Metals I, H. J. Göntherodt and H. Beck, eds. ( Springer, Berlin 1981 ) p. 167.

    Chapter  Google Scholar 

  8. H. v. Lohneysen, Phys. Rep. 79, 161 (1981).

    Article  ADS  Google Scholar 

  9. P. Doussineau, in Proc. 3rd Int. Conf. of the Condensed Matter Division of the EPS, Lausanne 1983.

    Google Scholar 

  10. R. B. Stephens, Phys. Rev. B8, 2896 (1973)

    Article  ADS  Google Scholar 

  11. RB. Stephens, Phys. Rev., 13, 852 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. E. Graebner, B. Golding, R. J. Schutz, F. S. L. Hsu, H. S. Chen, Phys. Rev. Lett. 39, 1480 (1977).

    Article  ADS  Google Scholar 

  13. A. K. Raychaudhuri, J. M. Peech, and R. O. Pohl, in Phonon Scattering in Condensed Matter, Plenum Press, New York 1980, H. J. Maris, ed., p. 45.

    Chapter  Google Scholar 

  14. P. W. Anderson, B. I. Halperin, C. M. Varma, Philos. Mag. 25, 1 (1972).

    Google Scholar 

  15. W. A. Phillips, J. Low-Temp. Phys. 7, 351 (1972).

    Article  ADS  Google Scholar 

  16. J.L. Black, B. I. Halperin, Phys. Rev. B16, 2879 (1977)

    Article  ADS  Google Scholar 

  17. JL. Black, Phys. Rev. B17, 2740 (1978).

    ADS  Google Scholar 

  18. M. T. Loponen, R. C. Dynes, V. Narayanamurti, J. P. Garno, Phys. Rev. B25, 1161 and 4310 (1982);

    Google Scholar 

  19. M. Meissner and K. Spitzmann, Phys. Rev. Lett. 46, 265 (1981).

    Article  ADS  Google Scholar 

  20. J. Zimmermann and G. Weber, Phys. Rev. Lett. 46, 661 (1981).

    Article  ADS  Google Scholar 

  21. W. Knaak and M. Meissner, Bull. Am. Phys. Soc., 30 No. 3, 326 (1985).

    Google Scholar 

  22. H. V. Löhneysen, Proceedings of the MRS Europe conference Strasbourg, June 5–8, 1984, to be published.

    Google Scholar 

  23. A. K. Raychaudhuri and R. 0. Pohl, Phys. Rev. B25, 1310 (1982).

    Google Scholar 

  24. B. D. Nathan, L. F. Lou, R. H. Tait, Solid State Commun. 19, 615 (1976).

    Google Scholar 

  25. L. F. Lou, Solid State Commun. 19, 335 (1976).

    Google Scholar 

  26. B. S. Chandrasekhar, H. R. Ott, and H. Rudigier, Solid State Commun. 42, 419 (1982).

    Google Scholar 

  27. G. S. Kumar, J. W. Vandersande, T. Klitsner, R. O. Pohl,and G. A. Slack, Phys. Rev. B, in print.

    Google Scholar 

  28. W. N. Lawless, Phys. Rev. B22, 3122 (1980); D. A. Ackerman, D. Moy, R. C. Potter, A. C. Anderson, W. N. Lawless, Phys. Rev. B23, 3886 (1981); F. J. Walker, A. C. Anderson, Phys. Rev. B29, 5881 (1984).

    Google Scholar 

  29. E. C. Subbarao in “Science and Technology of Zirconia”. Advances in Ceramics, Vol. 3, The American Ceramic Society, Columbus, OH, A. H. Heuer and L. W. Hobbs, eds.

    Google Scholar 

  30. W. N. Lawless, S. L. Swartz, Phys. Rev. B28, 2125 (1983).

    Article  ADS  Google Scholar 

  31. M. L. Linvill, J. W. Vandersande, and R. 0. Pohl, Bull. Mineral. 107, 521 (1984).

    Google Scholar 

  32. M. L. Linvill, Cornell University, unpublished data.

    Google Scholar 

  33. F. Lüty and J. Ortiz-Lopez, Phys. Rev. Lett. 50, 1289 (1983);

    Article  ADS  Google Scholar 

  34. F. Lüty, in Defects in Insulating Crystals, V. M. Turkevich and K. K. Shvarts, eds. ( Springer Verlag, Berlin, 1981 ), p. 69.

    Google Scholar 

  35. V. Narayanamurti and R. 0. Pohl, Rev. Mod. Phys. 42, 201 (1970).

    Article  ADS  Google Scholar 

  36. W. D. Seward and V. Narayanamurti, Phys. Rev. 148, 463 (1966).

    Article  ADS  Google Scholar 

  37. J. J. De Yoreo, M. Meissner, R. O. Pohl, J. M. Rowe, J. J. Rush, and S. Susmann, Phys. Rev. Lett. 51, 1050 (1983).

    Article  ADS  Google Scholar 

  38. D. Moy, J. N. Dobbs, and A. C. Anderson, Phys. Rev. B29, 2160 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press , New York

About this chapter

Cite this chapter

Pohl, R.O., De Yoreo, J.J., Meissner, M., Knaak, W. (1985). Are we Beginning to Understand the Vibrational Anomalies of Glasses?. In: Adler, D., Fritzsche, H., Ovshinsky, S.R. (eds) Physics of Disordered Materials. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2513-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2513-0_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9519-8

  • Online ISBN: 978-1-4613-2513-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics