Skip to main content

A Model for Predicting the Occurrence of Regular Rings in AX2 Tetrahedral Glasses

  • Chapter
Physics of Disordered Materials

Part of the book series: Institute for Amorphous Studies Series ((IASS))

  • 580 Accesses

Abstract

Recent vibrational studies suggest that vitreous SiOz2 contains a modest concentration (∼2 percent) of small highly regular rings of bonds. This evidence is reviewed, and a simple model is developed that successfully predicts the existence of such rings. The model is then used to estimate the probability of occurrence of similar regular rings in several other AX2 tetrahedral glasses, including BeF2, GeO2, GeS2, GeSe2, SiS2, SiSe2 and ZnCI2. These predictions are supported by the appearance of anomalous sharp lines in the Raman spectra of the glasses, and some of these Raman spectra are presented in the paper. Most interesting is the prediction that v-GeO2 contains a large concentration of nearly planar 3-rings, an element of intermediate range order not seen in the crystalline forms of GeO2 and not included in earlier structural models for the glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See A.R. Cooper, Jr., J. Non - Crystall. Solids 49, 1 (1982).

    Article  ADS  Google Scholar 

  2. F. L. Galeener, Philosoph. Mag. B 51, L1 (1985).

    Article  Google Scholar 

  3. R. L. Mozzi and B. E. Warren, J. Appl. Crystallogr. 2, 164 (1969).

    Article  Google Scholar 

  4. P. H. Gaskell and I. D. Tarrant, Philosoph. Mag. B 42, 265 (1980).

    Article  Google Scholar 

  5. F. G. Galeener, Phys. Rev. B 19, 4292 (1979).

    Article  ADS  Google Scholar 

  6. R. A. Barrio, F. L. Galeener, and E. Martinez, Phys. Rev. Lett. 52, 1786 (1984).

    Article  ADS  Google Scholar 

  7. R. H. Stolen, J. T. Krause, and C. R. Kurkjian, Discuss. Faraday Soc. 50, 103 (1970).

    Article  Google Scholar 

  8. J. B. Bates, R. W. Hendricks, and L. B. Shaffer, J. Chem. Phys. 61, 4163 (1974).

    Article  ADS  Google Scholar 

  9. A. E. Geissberger and F. L. Galeener, Phys. Rev. B 28, 3266 (1983).

    Article  ADS  Google Scholar 

  10. R. H. Stolen and G. E. Walrafen, J. Chem. Phys. 64 (1976), 2623.

    Article  ADS  Google Scholar 

  11. J. C. Mikkelsen, Jr., and F. L. Galeener, J. Non - Crystall. Solids 37, 71

    Google Scholar 

  12. F. L. Galeener and R. H. Geils, in: “The structure of Non-Crystalline Materials.” ed. P.H. Gaskell ( Taylor and Francis, London, 1977 ) p. 223.

    Google Scholar 

  13. F. L. Galeener and A. E. Geissberger, Phys. Rev. B 27, 6199 (1983).

    Article  ADS  Google Scholar 

  14. F. L. Galeener and J. C. Mikkelsen, Jr., Phys. Rev. B 23, 5527 (1981).

    Article  ADS  Google Scholar 

  15. G. W. Walrafen, P. N. Krishnan and S. W. Freiman, J. Appl. Phys. 52, 2832

    Google Scholar 

  16. G. E. Walrafen and P. N. Krishnan, J. Chem. Phys. 74, 5328 (1981).

    Article  ADS  Google Scholar 

  17. F. L. Galeener, J. Non-Cryst. Solids 49, 53 (1982).

    Article  ADS  Google Scholar 

  18. F. L. Galeener, Solid State Commun. 44, 1037 (1982).

    Article  ADS  Google Scholar 

  19. F. L. Galeener, in The Structure of Noncrystalline Materials 1982, edited by P. H. Gaskell, J. M. Parker, and E. A. Davis ( Taylor and Francis, London, 1983 ), p. 337.

    Google Scholar 

  20. F. L. Galeener, R. A. Barrio, E. Martinez, and R. J. Elliott, Phys. Rev. Lett. 53, 2429 (1984).

    Article  ADS  Google Scholar 

  21. M. D. Newtcn and G. V. Gibbs, Phys. Chem. Minerals 6, 221 (1980).

    Article  ADS  Google Scholar 

  22. J. R. G. da Silva, D. G. Pinatti, C. E. Anderson and M. L. Rudee, Philosoph. Mag. 31, 713 (1975).

    Article  ADS  Google Scholar 

  23. A. C. Wright, G. Etherington, J. A. Erwin Desa, R. N. Sinclair, G. A. N. Connell, and J. C. Mikkelsen, Jr. J. Non-Cryst. Solids 49, 63 (1982).

    Article  ADS  Google Scholar 

  24. A. J. Leadbetter and A. C. Wright, J. Non - Crystall. Solids 7, 37 (1972).

    Article  ADS  Google Scholar 

  25. A diffraction measurement of <0> has not yet been reported for v-GeS2 (see Table 2 of Ref. 23), so we use 93°, the H-S-H angle in the H2S molecule. (The true value will probably be a little larger).

    Google Scholar 

  26. Not known; so we use 91°, the H-Se-H angle in the H2Se molecule.

    Google Scholar 

  27. Unknown; so we use the value assumed for v-GeS2. The true value is likely to be smaller, in view of trends seen in Table 3 of Ref. 23.

    Google Scholar 

  28. Unknown; so we use the value assumed for v - GeSe2, and this is probably a slight overestimate.

    Google Scholar 

  29. J. A. Erwin Desa, A. C. Wright, J. Wong and R. N. Sinclair, J. Non - Crystall. Solids 51, 57 (1982).

    Article  ADS  Google Scholar 

  30. F. L. Galeener, G. Lucovsky, and R. H. Geils, Solid State Commun. 25, 405 (1978).

    Article  ADS  Google Scholar 

  31. F. L. Galeener and G. Lucovsky, Phys. Rev. Lett. 37, 1474 (1976).

    Article  ADS  Google Scholar 

  32. F. L. Galeener, A. E. Geissberger, G. W. Ogar, Jr. and R. E. Loehman, Phys. Rev. B 28, 4768 (1983).

    Article  ADS  Google Scholar 

  33. R. A. Barrio, F. L. Galeener and E. Martinez, Phys. Rev. B. (submitted). This paper is an expanded version of Ref. 6.

    Google Scholar 

  34. J. C. Phillips, Solid State Phys. 37, 93 (1982).

    Google Scholar 

  35. A. C. Wright, private communication. See also Ref. 24.

    Google Scholar 

  36. This was first proposed by the author in Ref. 18.

    Google Scholar 

  37. E. Dupree and R. F. Pettifer, Nature 308, 523 (1984).

    Article  ADS  Google Scholar 

  38. For a listing of ring statistics in various models, see A. C. Wright and J. A. Erwin Desa, Phys. Chem. Glasses 19, 140 (1978).

    Google Scholar 

  39. D. L. Griscom, in “Borate Glasses”, edited by L. D. Pye, V. D. Frechette, and N. J. Kreidl (Plenum, New York, 1978), p. 11ff.

    Google Scholar 

  40. F. L. Galeener and M. F. Thorpe, Phys. Rev. B 28, 5802 (1983).

    Article  ADS  Google Scholar 

  41. F. L. Galeener, unpublished data. See, e.g., G. Lucovsky, F. L. Galeener, R. C. Keezer, R. H. Geils and H. A. Six, Phys. Rev. B 10, 5134 (1974).

    Google Scholar 

  42. R. J. Nemanich and S. A. Solin, Solid State Commun. 21, 273 (1977).

    Article  ADS  Google Scholar 

  43. A. Feltz, M. Pohle, H. Steil and G. Herms, J. Non - Crystall. Solids 69, 271 (1985).

    Article  ADS  Google Scholar 

  44. P. M. Bridenbaugh, G. P. Espinosa, J. E. Griffiths, J. C. Phillips, and J. P. Remeika, Phys. Rev. B 20, 4140 (1979).

    Article  ADS  Google Scholar 

  45. M. Tenhover, M. A. Hazle and R. K, Graselli, Phys. Rev. Lett. 51, 404 (1983). More recently, M. Tenhover, J. H. Harris, M. A. Hazle, H. Scher and R. K. Grasselli, J. Non - Crystall. Solids 69, 249 (1985).

    Article  ADS  Google Scholar 

  46. M. Tenhover, M. A. Hazle and R. K, Graselli, Phys. Rev. Lett. 51, 404 (1983). More recently, M. Tenhover, J. H. Harris, M. A. Hazle, H. Scher and R. K. Grasselli, J. Non - Crystall. Solids 69, 249 (1985).

    Article  ADS  Google Scholar 

  47. F. L. Galeener, J. C. Mikkelsen, Jr., A. C. Wright, R. N. Sinclair, J. A. Erwin Desa and J. Wong, J. Non - Crystall. Solids 42, 23 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press , New York

About this chapter

Cite this chapter

Galeener, F.L. (1985). A Model for Predicting the Occurrence of Regular Rings in AX2 Tetrahedral Glasses. In: Adler, D., Fritzsche, H., Ovshinsky, S.R. (eds) Physics of Disordered Materials. Institute for Amorphous Studies Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2513-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2513-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9519-8

  • Online ISBN: 978-1-4613-2513-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics