Advertisement

Synchrotron Radiation and the Determination of Atomic Arrangements in Amorphous Materials

  • Arthur Bienenstock
  • Alice Fischer-Colbrie
  • Robert Lorentz
  • Karl Ludwig
  • Lane Wilson
Part of the Institute for Amorphous Studies Series book series (IASS)

Abstract

Synchrotron radiation (SR) makes feasible a number of new techniques for the determination of atomic arrangements in amorphous materials using x-ray absorption and scattering. It also provides marked improvements in established techniques. These result from the extremely high x-ray intensities as well as the continuous spectrum, which allows measurements to be taken at photon wavelengths determined by the nature of the experiment rather than by the availability of an appropriate x-ray tube anode material. In this paper, we review these improvements and new capabilities, with an emphasis on the types of information which can be obtained. The techniques discussed are radial distribution functions (RDF’s), EXAFS, anomalous x-ray scattering for the determination of the coordinations of specific atomic species in polyatomic amorphous materials and grazing incidence scattering (GIS) for the determination of atomic arrangements in thin amorphous films on substrates.

Keywords

Synchrotron Radiation Radial Distribution Function Atomic Arrangement Atomic Species Anomalous Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bienenstock, in “The Structure of Non-Crystalline Materials”, edited by P. H. Gaskell, Taylor and Francis Ltd., London, 1977, p. 1.Google Scholar
  2. 2.
    See, e.g., “EXAFS and Near Edge Structure III”, edited by K. O. Hodgson, B. Hedman and J.E. Penner-Hahn, Springer-Verlag, Berlin, 1984 and references contained therein.Google Scholar
  3. 3.
    S. Hunter, Ph.D. Thesis, Stanford University, 1977, published as Stanford Synchrotron Radiation Laboratory Report No. 77/04; S. H. Hunter, A. Bienenstock and T. M. Hayes, in ref. 1, p. 73.Google Scholar
  4. 4.
    S. Laderman, A. Bienenstock and K. S. Liang, Solar Energy Mats. 8, 15 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    J. Kortright, W. Warburton and A. Bienenstock, in “EXAFS and Near Edge Structure”, edited by A. Biancone, L. Incoccia and S. Stipich, Springer-Verlag, Berlin, 1983, p. 362.Google Scholar
  6. 6.
    N. J. Shevchik, Phil. Mag. 35, 1289, (1977).ADSCrossRefGoogle Scholar
  7. 7.
    P. H. Fuoss, P. Eisenberger, W. K. Warburton and A. Bienenstock, Phys. Rev. Lett. 46, 1537 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    J. Kortright, Ph.D. Thesis, Stanford University, 1984, published as Stanford Synchrotron Radiation Laboratory Report 84/05.Google Scholar
  9. 9.
    R. Lorentz, Ph.D. Thesis, Stanford University, expected in 1985.Google Scholar
  10. 10.
    K. Ludwig, L. Wilson, W.K. Warburton and A. Bienenstock, to be published.Google Scholar
  11. 11.
    M. Laridjani, P. Leboucher, D. Raoux and J.F. Sadoc; A. Bienenstock, R. Lorentz, K. Ludwig and L. Wilson, presented at the conference, Progress in X-Ray Studies by Synchrotron Radiation, Strasbourg, April, 1985.Google Scholar
  12. 12.
    W. Marra, P. Eisenberger, A. Y. Cho, J. Appl. Phys. 50 (1979) 6279.CrossRefGoogle Scholar

Copyright information

© Plenum Press , New York 1985

Authors and Affiliations

  • Arthur Bienenstock
    • 1
  • Alice Fischer-Colbrie
    • 1
  • Robert Lorentz
    • 1
  • Karl Ludwig
    • 1
  • Lane Wilson
    • 1
  1. 1.Stanford Synchrotron Radiation LaboratoryStanford UniversityStanfordUSA

Personalised recommendations