Interaction Induced Light Scattering from Tetrahedral Molecules

  • M. Neumann
  • H. A. Posch
Part of the NATO ASI series book series (volume 127)


Collision induced light scattering from tetrahedral molecules is an highly collective N-body process and depends — in principle — on the full charge distribution of the molecules and, consequently, on the full orientation dependent pair potentials and induced pair polarizabilities. The pair potential is usually treated in terms of many-center Lennard-Jones potentials. For the calculation of the collision induced pair polarizabilities an interacting point atom polarizability model is introduced, the properties of which are discussed. It may be cast into a form most suitable for molecular dynamics simulations of condensed phases. As an illustration of the applicability of these models a computer simulation for dense fluids resembling CF4 (for two different densities) and CCl4 are presented.


Light Scattering Molecular Dynamic Simulation Molecular Polarizability Liquid Argon Point Polarizability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S. C., 1975, Depolarized Rayleigh scattering in simple fluids, Dissertation, The Catholic University of America, Washington D. CGoogle Scholar
  2. An, S. C., Montrose, C. J., and Litovitz, T. A., 1976, Low-frequency structure in the depolarized spectrum of argon, J. Chem. Phys., 64: 3717CrossRefGoogle Scholar
  3. An, S. C., Fishman, L., Litovitz, T. A., Montrose, C. J., and Posch, H. A., 1979, Depolarized light scattering from dense noble gases, J. Chem. Phys., 70: 4626CrossRefGoogle Scholar
  4. Applequist, J., Carl, J. R., and Fung, K. K., 1972, An atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities, J. Am. Chem. Soc., 94: 2952CrossRefGoogle Scholar
  5. Applequist, J., 1977, An atom dipole interaction model for molecular optical properties, Accts. Chem. Res., 10: 79CrossRefGoogle Scholar
  6. Barocchi, F., and McTague, J. P., 1974, Binary collision induced light scattering in liquid CH4, Opt. Commun., 12: 202CrossRefGoogle Scholar
  7. Barocchi, F., and McTague, J. P., 1975, Collision induced light scattering in gaseous CH4, Phys. Lett., A53: 488Google Scholar
  8. Barocchi, F., Zoppi, M., Shelton, D. P., and Tabisz, G. C., 1977, A comparison of the spectral features of the collision-induced light scattering by the molecular gases CH4 and CF4 and by argon, Can. J. Phys., 55: 1962CrossRefGoogle Scholar
  9. Barron, L. D., and Buckingham, A. D., 1975, Rayleigh and Raman optical activity, Ann. Rev. Phys. Chem., 26: 381CrossRefGoogle Scholar
  10. Bucaro, J. A., and Litovitz, T. A., 1971, Rayleigh scattering: collisional motions in liquids, J. Chem. Phys., 54: 3846CrossRefGoogle Scholar
  11. Bucaro, J. A., and Litovitz, T. A., 1971, Molecular motions in CCl4: light scattering and infrared absorption, J. Chem. Phys., 55: 3585Google Scholar
  12. Buckingham, A. D., and Tabisz, G. C., 1977, Collision-induced rotational Raman scattering, Optics Letters, 1: 220CrossRefGoogle Scholar
  13. Buckingham, A. D., and Tabisz, G. C., 1978, Collision-induced rotational Raman scattering by tetrahedral and octahedral molecules, Molec. Phys., 36: 583Google Scholar
  14. Buckingham, A. D., and Clarke Hunt, K. L., 1980, The pair polarizability anisotropy of SF6 in the point-atom-polarizability approximation, Molec. Phys., 40: 643Google Scholar
  15. Frommhold, L., 1981, Collision-induced scattering and the diatom-polarizabilities, Adv. Chem. Phys., 46: 1Google Scholar
  16. Frommhold, L., 1984, this volumeGoogle Scholar
  17. Gabelnick, H. S., and Strauss, H. L., 1968, Low-frequency motions in liquid carbon-tetrachloride. II The Raman spectrum, J. Chem. Phys., 49: 2334Google Scholar
  18. Gharbi, A., and Le Duff, 1977, Collision-induced scattering for molecules, Physica, 87A: 177CrossRefGoogle Scholar
  19. Gharbi, A., and Le Duff, 1978, Line shape of the collision-induced scattering in CF4, Physica, 90A: 619CrossRefGoogle Scholar
  20. Gharbi, A., and Le Duff, 1980, Many-body correlations for Raman and Rayleigh collision induced scattering, Molec. Phys., 40: 545Google Scholar
  21. Gornall, W. S., Howard-Lock, H. E., and Stoicheff, B. P., 1970, Induced anisotropy and light scattering in liquids, Phys. Rev. A, 1: 1288Google Scholar
  22. Guillot, B., Bratos, S., and Birnbaum, G., 1980, Theoretical study of spectra of depolarized light scattering from dense rare-gas fluids, Phys. Rev. A, 22: 2230CrossRefGoogle Scholar
  23. Ho, J. H. K., and Tabisz, G. C., 1973, Collision-induced light scattering in liquids and the binary collision model, Can. J. Phys., 51: 2025Google Scholar
  24. Howard-Lock, H. E., and Taylor, R. S., 1974, Induced anisotropy and light scattering in liquids. II., Can. J. Phys., 52: 2436Google Scholar
  25. Keyes, T., and Ladanyi, B. M., 1977, The role of local fields and interparticle pair correlations in light scattering by dense fluids II. The depolarized spectrum for non-spherical molecules, Molec. Phys., 33: 1099Google Scholar
  26. Ladanyi, B. M., and Keyes, T., 1979, Effect of internal fields on depolarized light scattering from n-alkane gases, Molec. Phys., 37: 1809CrossRefGoogle Scholar
  27. Ladanyi, B. M., 1983, Molecular dynamics study of Rayleigh light scattering from molecular fluids, J. Chem. Phys., 78: 2189Google Scholar
  28. Ladd, A. J. C., Litovitz, T. A., and Montrose, C. J., 1979, Molecular dynamics studies of depolarized light scattering from argon at various fluid densities, J. Chem. Phys., 71: 4242Google Scholar
  29. Ladd, A. J. C., Litovitz, T. A., Clarke, J. H. R., and Woodcock, L. V., 1980, Molecular dynamics simulations of depolarized Rayleigh scattering from liquid argon at the triple point, J. Chem. Phys., 72: 1759Google Scholar
  30. Lallemand, P. M., 1970, Spectral distribution of double light scattering by gases, Phys. Rev. Lett., 25: 1079Google Scholar
  31. Leite, R. C. C., Moore, R. S., and Porto, S. P. S., 1964, Use of gas lasers in studies of the depolarization of the Rayleigh scattering from simple liquids, J. Chem. Phys., 40: 3741Google Scholar
  32. Levine, H. B., and Birnbaum, G., 1968, Collision-induced light scattering, Phys. Rev. Lett., 20: 439CrossRefGoogle Scholar
  33. Madden, P. A., 1977, The lineshape of the depolarised Rayleigh scattering from liquid argon, Chem. Phys. Lett., 47: 174Google Scholar
  34. Madden, P. A., 1978, The depolarized Rayleigh scattering from fluids of spherical molecules, Molec. Phys., 36: 365Google Scholar
  35. Neumann, M., 1984, in preparationGoogle Scholar
  36. Oxtoby, D. W., 1978, The calculation of pair polarizabilities through continuum electrostatic theory, J. Chem. Phys., 69: 1184Google Scholar
  37. Posch, H. A., 1979, Collision-induced light scattering from fluids composed of tetrahedral molecules. I. Molec. Phys., 37: 1059Google Scholar
  38. Posch, H. A., 1980, Collision induced light scattering from fluids composed of tetrahedral molrcules. II. Intensities, Molec. Phys., 40: 1137Google Scholar
  39. Posch, H. A., 1982, Collision induced light scattering from fluids composed of tetrahedral molecules. III. Neopentane vapour, Molec. Phys., 46: 1213Google Scholar
  40. Prasad, P. L., and Nafie, L. A., 1979, The atom dipole interaction model of Raman optical activity: Reformulation and comparison to the general two-group model, J. Chem. Phys., 70: 1979Google Scholar
  41. Prengel, A. T., and Gornall, W. S., 1976, Raman scattering from colliding molecules and Van der Waals dimers in gaseous methane, Phys. Rev. A, 13: 253Google Scholar
  42. Shelton, D. P., and Tabisz, G. C., 1975, Moment analysis of collision-induced light scattering from compressed CF4, Phys. Rev. A., 11: 1571Google Scholar
  43. Shelton, D. P., Mathur, M. S., and Tabisz, G. C., 1975, Collision-induced light scattering by compressed CF4 and CF4-He mixtures, Phys. Rev. A, 11: 834CrossRefGoogle Scholar
  44. Shelton, D. P., and Tabisz, G. C., 1980, Binary collision induced light scattering by isotropic molecular gases. II. Molecular spectra and induced rotational Raman scattering, Molec. Phys., 40: 299CrossRefGoogle Scholar
  45. Shelton, D. P., Tabisz, G. C., Barocchi, F., and Zoppi, M., 1982, The three body correlation spectrum in collision induced light scattering by isotropic molecular gases, Molec. Phys., 46: 21CrossRefGoogle Scholar
  46. Treitl, K., Pleich, R., and Posch, H. A., 1984, in preparationGoogle Scholar
  47. Varshneya, D., Shirron, S. F., Litovitz, T. A., Zoppi, M., and Barocchi, F., 1981, Collision-induced light scattering: Integrated intensity of argon, Phys. Rev. A, 23: 77CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. Neumann
    • 1
  • H. A. Posch
    • 1
  1. 1.Institut für ExperimentalphysikUniversität WienViennaAustria

Personalised recommendations