Advertisement

Piecewise Polynomial Hylleraas Configuration Interaction Wavefunctions for Helium

  • D. W. Zaharevitz
  • H. J. Silverstone
  • D. M. Silver

Abstract

The scientific problem treated in this work is that of describing the electronic structure of atoms and molecules with sufficient accuracy to be useful for predictions of chemical properties. The present activity consists of deriving computational solutions of the many-body Schrodinger equation for small chemical species. Two specific objectives are to explore the consequences of an explicit correlation term in the electronic wavefunction and to examine the effectiveness of certain mathematical forms as an expansion basis. The magnitude of the computational problem is massive and the existence of supercomputers like the CYBER 205 helps to bring these problems into a feasible range.

Keywords

Helium Atom Mesh Point Configuration Interaction Radial Orbital Virtual Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Carroll, H. J. Silverstone, and R. M. Metzger, “Piecewise Polynomial Configuration Interaction Natural Orbital Study of l2s Helium,” J. Chem. Phys. 71, 4142 (1979).CrossRefGoogle Scholar
  2. 2.
    J. S. Sims, S. A. Hagstrom, and J. R. Rumble, Jr., “Combined Configuration-Interaction-Hylleraas-Type Wave-Function Study of the Ground State of the Beryllium Atom,” Int. J. Quantum Chem. 10, 853 (1976) and references therein.CrossRefGoogle Scholar
  3. 3.
    C. L. Pekeris, “11s and 23s State of Helium,” Phys. Rev. 115, 1216 (1959).CrossRefGoogle Scholar
  4. 4.
    E. Hylleraas, “Neue berechnung der energie des heliums im grundzustande, sowie des tiefstens terms von ortho-helium,” Z. Physik 54, 347 (1929).CrossRefGoogle Scholar
  5. 5.
    K. Frankowski and C. L. Pekeris, “Logarithmic Terms in the Wavefunctions of the Ground State of 2-Electron Atoms,” Phys. Rev. 146, 46 (1966).CrossRefGoogle Scholar
  6. 6.
    D. E. Freund, B. D. Huxtable, and J. D. Morgan III, “Variational Calculations on the Helium Isoelectronic Sequence,” (preprint, 1983 ).Google Scholar
  7. 7.
    J. L. Gázquez and H. J. Silverstone, “Piecewise polynomial electronic wavefunctions,” J. Chem. Phys. 67, 1887 (1977).CrossRefGoogle Scholar
  8. 8.
    H. J. Silverstone, D. P. Carroll and D. M. Silver, “Piecewise Polynomial Basis Functions for Configuration Interaction and Many-Body Perturbation Theory Calculations. The Radial Limit of Helium,” J. Chem. Phys. 68, 616 (1978).CrossRefGoogle Scholar
  9. 9.
    CH. Hermite, ”Sur La Formule d’Interpolation de Lagrange,” J. reine angew. Math. 84, 70 (1878).CrossRefGoogle Scholar
  10. 10.
    I. Shavitt, EIGEN, Program 172. 1, Quantum Chemistry Program Exchange (Indiana University, Bloomington, Indiana, 1970).Google Scholar
  11. 11.
    B.T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, “Matrix Eigensystem Routines - EISPACK Guide,” ( Springer, Berlin 1974 ).Google Scholar
  12. 12.
    C. F. Bender, “Integral Transformation. A Bottleneck in Molecular Quantum Mechanical Calculations,” J. Comput. Phys. 9, 547 (1972).CrossRefGoogle Scholar
  13. 13.
    E. Hylleraas, “Uber den Grundzustand des Helium Atoms,” Z. Physik 48, 469 (1928).CrossRefGoogle Scholar
  14. 14.
    E. R. Davidson, ”Natural Expansion of Exact Wavefunctions. III. The Helium-Atom Ground State,” J. Chem. Phys. 39, 875 (1963).CrossRefGoogle Scholar
  15. 15.
    R. Ahlrichs, W. Kutzelnigg and W. A. Bingel, “On the Solution of the Quantum Mechanical 2-Electron Problem by Direct Calculation of the Natural Orbitals. III. Refined Treatment of the Helium Atom and the Helium-Like Ions,” Theor. Chim. Acta 5, 289 (1966).CrossRefGoogle Scholar
  16. 16.
    L. C. Green, E. K. Kolchin and N. C. Johnson, ”Wave Functions for the Excited States of Neutral Helium,” Phys. Rev. A 139, 373 (1965).CrossRefGoogle Scholar
  17. 17.
    D. H. Tycko, L. H. Thomas and K. M. King. ”Numerical Calculation of the Wave Functions and Energies of the 11s and 23s States of Helium,” Phys. Rev. 109, 369 (1958).CrossRefGoogle Scholar
  18. 18.
    G. O. Morrell, Jr. and R. G. Parr, “Estimates of Helium ℓ-Limit Energies,” J. Chem. Phys. 71, 4139 (1979).CrossRefGoogle Scholar
  19. 19.
    T. Kinoshita, “Ground State of the Helium Atom,” Phys. Rev. 105, 1490 (1957).CrossRefGoogle Scholar
  20. 20.
    C. W. Scherr and R. E. Knight, “2-Electron Atoms. III. A Sixth Order Perturbation Study of the lls Ground State,” Rev. Mod. Phys. 35, 436 (1963).CrossRefGoogle Scholar
  21. 21.
    C. Schwartz, “Ground State of the Helium Atom,” Phys Rev. 128, 1146 (1962).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • D. W. Zaharevitz
    • 1
  • H. J. Silverstone
    • 1
  • D. M. Silver
    • 2
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations