Critical Comparison of Monitoring EEG, Cerebral Function (CFM), Compressed Spectral Array (CSA) and Evoked Response Under Conditions of Reduced Cerebral Perfusion

  • P. F. Prior

Abstract

This section concerns electrical activity during systemic hypotension in neuroanaesthesia. My task is to compare the various methods for recording such activity to warn of inadequate perfusion. Firstly we must examine the scientific basis for using the brain’s electrical activity as a monitor of cerebral ischaemia. We must define the characteristics of the relevant electrical changes and then consider what general methods of displaying them best suit different clinical or research purposes. There are two broad groups of monitoring methods: firstly those based on the spontaneous EEG and secondly those utilizing cerebral potentials evoked by specific external stimuli. Both spontaneous and evoked activites are only maintained in their normal form when there is adequate oxidative neuronal metabolism.

Keywords

Depression Halothane Topo Stimul Malone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. H., Brierley, J. B., Connor, R. C. R., Treip, C. S., 1966, The effects of systemic hypotension upon the human brain, Brain, 89:235.PubMedCrossRefGoogle Scholar
  2. Astrup, J., Symon, L., Branston, N. M., Lassen, N. A., 1977, Cortical evoked potential and extracellular K+and H+ at critical levels of brain ischaemia, Stroke, 8:51.PubMedCrossRefGoogle Scholar
  3. Bickford, R. G., Brimm, J., Berger, L., Aung, M., 1973, Application of compressed spectral array in clinical EEG, in: “Automation of Clinical Electroencephalography,” P. Kellaway, I. Petersen, eds., Raven Press, New York, 55.Google Scholar
  4. Billings, R. J., 1981, Automatic detection, measurement and documentation of the visual evoked potential using a commercial microprocessor-equiped average, Electroenceph.Clin.Neurophysiol., 52:214.PubMedCrossRefGoogle Scholar
  5. Blagbrough, A. E., Brierley, J. B., Nicholson, A. N., 1973, Behavioural and neurological disturbances associated with hypoxic brain damage, J.Neurol.Sci., 18:475.PubMedCrossRefGoogle Scholar
  6. Brierley, J. B., Miller, A. A., 1966, Fatal brain damage after dental anaesthesia. Its nature, aetiology and prevention, Lancet, ii: 869.CrossRefGoogle Scholar
  7. Brierley, J. B., Brown, A. W., Excell, B. J., Meldrum, B. S., 1969, Brain damage in the Rhesus monkey resulting from profound arterial hypotension. Its nature, distribution and general physiological correlates, Brain Res., 13:68.Google Scholar
  8. Brierley, J. B., Prior, P. F., Calverley, J., Brown, A. W., 1978, Profound hypoxia in Papio anubis and Macaca mulatta — physiological and neuropathological effects, J.Neurol.Sci., 37:1.PubMedCrossRefGoogle Scholar
  9. Brierley, J. B., Prior, P. F., Calverley, J., Jackson, S. J., Brown, A. W., 1980, Pathogenesis of ischaemic neuronal damage along the cerebral arterial boundary zones in Papio anubis, Brain, 103:929.PubMedCrossRefGoogle Scholar
  10. Cooper, R., Osselton, J. W., Shaw, J. C., 1980, “EEG Technology,” 3rd edition, Butterworths, London.Google Scholar
  11. Davis, D. A., Klein, F. F., 1977, A clinically practical method of EEG analysis and its performance under common states of anesthesia, Abstract, Annual Meeting of American Society of Anesthesiologists.Google Scholar
  12. Etherington, N. J., 1981, Continuous assessment of brain function: the design and evaluation of an electroencephalographic frequency band monitor. M.Sc.Thesis, University of London.Google Scholar
  13. Fleming, R. A., Smith, N. T., 1979, An inexpensive device for analysing and monitoring the electroencephalogram, Anesthesiology, 50:456.PubMedCrossRefGoogle Scholar
  14. Fitch, W., Jones, J. V., Graham, D. I., MacKenzie, E. T., Harper, A. M., 1978, Effects of hypotension induced by halothane, on the cerebral circulation in baboons with experimental renovascular hypotension, Br.J.Anaesth., 50:119.PubMedCrossRefGoogle Scholar
  15. Graham, D. I., 1977, Pathology of hypoxic damage in man, in: “Hypoxia and Ischaemia,” B. C. Morson, ed., J.Clin.Path. 30 supplement(Royal College of Pathologists), 11:170.Google Scholar
  16. Handbook of Electroencephalography and Clinical Neurophysiology, 1972, 1973, A. Remond, ed., vols 4B and 5A, Elsevier, North Holland, Amsterdam.Google Scholar
  17. Hange, A., Thoresen, M., Wallfie, L., 1980, Changes in cerebral blood flow during hyperventilation and C02 breathing measured transcutaneously in humans by a bidirectional, pulsed, ultrasound doppler blood velocity meter, Acta Physiol.Scand., 110:167.CrossRefGoogle Scholar
  18. Hume, A. L., Cant, B. R., Shaw, N. A., 1979, Central somatosensory conduction time in comatose patients, Ann.Neurol., 5:379.PubMedCrossRefGoogle Scholar
  19. Ishikawa, T., McDowall, D. G., 1981, Electrical activity of the cerebral cortex during induced hypotension with sodium nitro-prusside and trimetaphan in the cat, Br.J.Anaesth., 53:605.PubMedCrossRefGoogle Scholar
  20. Levy, W. J., Shapiro, H. M., Maruchak, G., Meathe, E., 1980, Automated EEG processing for intraoperative monitoring, Anesthesiology, 53:223.PubMedCrossRefGoogle Scholar
  21. Matoušek, M., Arridsson, A., Friberg, S., 1978, Implementation of analytical methods in daily clinical EEG, in: “Contemporary Clinical Neurophysiology,” W. A. Cobb and H. van Duijn, Elsevier, Amsterdam, 199.Google Scholar
  22. Matthis, P., Scheffner, D., Benninger, C., 1981, Spectral analysis of the EEG; comparison of various spectral parameters, Electroenceph.clin.Neurophysiol., 52:218.PubMedCrossRefGoogle Scholar
  23. Maynard, D. E., 1977, The cerebral function analyser monitor (CFAM), Electroenceph.clin.Neurophysiol., 43:479.Google Scholar
  24. Maynard, D., Prior, P. F., Scott, D. F., 1969, A device for continuous monitoring of cerebral activity in resuscitated patients, Br.Med.J., 4:545.PubMedCrossRefGoogle Scholar
  25. Meldrum, B, S., Brierley, J. B., 1969, Brain damage in the Rhesus monkey resulting from profound arterial hypotension. II, changes in the spontaneous and evoked electrical activity of the neocortex, Brain Res., 13:101.PubMedCrossRefGoogle Scholar
  26. Morawetz, R. B., Crowell, R. H., de Girolami, U., Marcoux, F. W., Jones, T. H., Halsey, J. H., 1979, Regional cerebral blood flow thresholds during cerebral ischaemia, Fed.Proc., 38:2493.PubMedGoogle Scholar
  27. Morawetz, R. B., de Girolami, U., Ojemann, R. G., Marcoux, F. W., Crowell, R. M., 1978, Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occlusion in unanesthetised monkeys, Stroke, 9:331.CrossRefGoogle Scholar
  28. Myers, R. R., Stockard, J. J., Saidman, L. J., 1977, Monitoring of cerebral perfusion during anesthesia by time-compressed Fourier analysis of the electroencephalogram, Stroke, 8:331.PubMedCrossRefGoogle Scholar
  29. Patel, H., 1981, Experience with the cerebral function monitor during deliberate hypotension, Br.J.Anaesth., 53:639.PubMedCrossRefGoogle Scholar
  30. Prior, P. F., 1979, “Monitoring Cerebral Function,” Elsevier/North Holland, Amsterdam.Google Scholar
  31. Prior, P. F., Maynard, D. E., Brierley, J. B., 1978, EEG monitoring for the control of anaesthesia produced by the infusion of althesin in primates, Br.J.Anaesth., 50:993.PubMedCrossRefGoogle Scholar
  32. Rémond, A., ed., 1977, “EEG Informatics,” Elsevier, Amsterdam.Google Scholar
  33. Shapiro, H. M., 1978, Monitoring in neurosurgical anesthesia, in: “Monitoring in Anesthesia,” L. J. Saidman, N. T. Smith, eds., Wiley, New York, 171.Google Scholar
  34. Shapiro, H. M., 1978, Monitoring in neurosurgical anesthesia, in: “Monitoring in Anesthesia,” L. J. Saidman, N. T. Smith, eds., Wiley, New York, 171.Google Scholar
  35. Schwartz, M. S., Colvin, M. P., Prior, P. F., Strunin, L., Simpson, B. R., Weaver, E. J. M., 1973, The cerebral function monitor; its value in predicting the neurological outcome in patients undergoing cardiopulmonary by-pass, Anaesthesia, 28:611.PubMedCrossRefGoogle Scholar
  36. Symon, L., Dorsch, W. W. C., Crockard, H. A., Branston, N. M., Brierley, J. B., 1976, Clinical features, local CBP and vascular reactivity in a chronic (3-year) stroke in baboons, in “Blood Flow and Metabolism in the Brain,” A. M. Harper, W. B Jennett, J. D. Miller, J. O. Rowan, eds., Churchill Livingstone, Edinburgh.Google Scholar
  37. Tolonen, H., Sulg, I. A., 1981, Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationships between EEG and CBF in brain infarction, Electroenceph.clin.Neurophysiol., 51:177.PubMedCrossRefGoogle Scholar
  38. Yates, P. O., Hutchinson, E. C., 1961, Cerebral infarction: the role of stenosis of the extracranial cerebral arteries, MRC Special Report Series, No.300, HMSO, London.Google Scholar
  39. Zülch, K. J., Behrend, R. C. H., 1961, The pathogenesis and topography of anoxia and ischaemia of the brain in man, in: “Cerebral Anoxia and the Electroencephalogram,” H. Gastaut, J. S. Meyer, eds., Thomas, Illinois, 144.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. F. Prior
    • 1
  1. 1.St. Bartholomew’s HospitalLondonUK

Personalised recommendations