Skip to main content

Sensory Transduction in Halobacterium

  • Conference paper

Part of the book series: NATO ASI Series ((NSSA,volume 89))

Abstract

Bacteria can sense and integrate outside stimuli and adapt to new environmental conditions, thereby revealing a simple mode of behavior. By a temporal sensing mechanism, bacteria orient indirectly in a biased three-dimensional random walk which finally leads the cells to accumulate in favorable surroundings or to avoid unfavorable areas. Chemosensing in eubacteria has been studied in a number of laboratories and is the sensory system most advanced in biochemical understanding (Koshland, 1980; Berg, 1985; Macnab, 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alam, M., and Oesterhelt, D., 1984, Morphology, function and isolation of halobacterial flagella; J. Mol. Biol., 176:459–475.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., 1985, Physics of bacterial chemotaxis, in: “Sensory Perception and Transduction in Aneural Organisms,” G. Colombetti, F. Lenci and P.-S. Song, eds., Plenum Press, New York.

    Google Scholar 

  • Bibikov, S. I., Baryshev, V. A., and Glagolev, A. N., 1982, The role of methylation in the taxis of Halobacterium halobium to light and chemo-effectors, FEBS Lett, 146:255–258.

    Article  CAS  Google Scholar 

  • Bogomolni, R. A., and Spudich, J. L., 1982, Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium, Proc. Natl. Acad. Sci. USA, 79:6250–6254

    Article  PubMed  CAS  Google Scholar 

  • Dencher, N. A., and Hildebrand, E., 1979, Sensory transduction in Halobacterium halobium: Retinal protein pigment controls UV-induced behavioral response, Z. Naturforsch., 34c:841–847.

    CAS  Google Scholar 

  • Hildebrand, E., 1980, Comparative discussion of photoreception in lower and higher organisms. Structural and functional aspects, in: “Photoreception and Sensory Transduction in Aneural Organisms, F. Lenci and G. Colombetti, eds., Plenum Press, New York, pp. 319–340.

    Google Scholar 

  • Hildebrand, E., and Dencher, N., 1975, Two photosystems controlling behavioural responses of Halobacterium halobium, Nature, 257:46–48.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, E., and Schimz, A., 1983a, Photosensory behavior of a bacteriorhodopsin-deficient mutant, ET-15, of Halobacterium halobium, Photochem. Photobiol., 37:581–584.

    Article  Google Scholar 

  • Hildebrand, E., and Schimz, A., 1983b, Consecutive formation of sensory photosystems in growing Halobacterium halobium, Photochem. Photobiol., 38:593–597.

    Article  CAS  Google Scholar 

  • Koiwai, O., and Hayashi, H., 1979, Studies on bacterial chemotaxis. IV. Interaction of maltose receptor with a membrane-bound chemosensing component, J. Biochem., 86:27–34.

    PubMed  CAS  Google Scholar 

  • Koshland, Jr., D. E., 1980, “Bacterial Chemotaxis as a Model Behavioral System,” Raven Press, New York.

    Google Scholar 

  • Lanyi, J. K., 1982, Spectrophotometric determination of halorhodopsin in Halobacterium halobium membranes, in: “Methods in Enzymology,” Vol. 88, L. Packer, ed., Academic Press, New York, pp. 439–443.

    Google Scholar 

  • Lanyi, J. K., and Weber, H. J., 1980, Spectrophotometric identification of the pigment associated with light-driven primary sodium translocation in Halobacterium halobium, J. Biol. Chem., 255:243–250.

    PubMed  CAS  Google Scholar 

  • Lindley, E. V., and MacDonald, R. E., 1979, A second mechanism for sodium extrusion in Halobacterium halobium: A light-driven sodium pump, Biochem. Biophys. Res. Commun., 88:491–499.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., 1985, Biochemistry of sensory transduction in bacteria, in: “Sensory Perception and Transduction in Aneural Organisms,” G. Colombetti, F. Lenci and P.-S. Song, eds., Plenum Press, New York.

    Google Scholar 

  • Matsuno-Yagi, A., and Mukohata, Y., 1980, ATP synthesis linked to a light-dependent proton uptake in a red mutant strain of Halobacterium lacking bacteriorhodopsin, Arch. Biochem. Biophys., 199:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Murvanidze, G. V., and Glagolev, A. N., 1981, Calcium ions regulate reverse motion in phototactically active Phormidium uncinatum and Halobacterium halobium, FEMS Microbiol. Lett., 12:3–6.

    Article  CAS  Google Scholar 

  • Ordal, G. W., and Fields, R. B., 1977, A biochemical mechanism for bacterial chemotaxis, J. Theoret. Biol., 68:491–500.

    Article  CAS  Google Scholar 

  • Schimz, A., 1981, Methylation of membrane proteins is involved in chemosensory and photosensory behavior of Halobacterium halobium, FEBS Lett., 125:205–207.

    Article  PubMed  CAS  Google Scholar 

  • Schimz, A., 1982, Localization of the methylation system involved in sensory behavior of Halobacterium halobium and its dependence on calcium, FEBS Lett., 139:283–286.

    Article  CAS  Google Scholar 

  • Schimz, A., and Hildebrand, E., 1979, Chemosensory responses of Halobacterium halobium, J. Bacteriol., 140:749–753.

    PubMed  CAS  Google Scholar 

  • Schimz, A., Sperling, W., Ermann, P., Bestmann, H. J., and Hildebrand, E., 1983, Substitution of retinal by analogues in retinal pigments of Halobacterium halobium. Contribution of bacteriorhodopsin and halorhodopsin to photosensory activity, Photochem. Photobiol., 38:417–423.

    Article  CAS  Google Scholar 

  • Schimz, A., Sperling, W., Hildebrand, E., and Köhler-Hahn, D., 1982, Bacteriorhodopsin and the sensory pigment of the photosystem 565 in Halobacterium halobium, Photochem. Photobiol., 36:193–196.

    Article  CAS  Google Scholar 

  • Sperling, W., and Schimz, A., 1980, Photosensory retinal pigments in Halobacterium halobium, Biophys. Struct. Meth., 6:165–169.

    Article  CAS  Google Scholar 

  • Spudich, E. N., and Spudich, J. L., 1982, Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy transduction mutants of Halobacterium halobium, Proc. Natl. Acad. Sci. USA, 79:4308–4312.

    Article  PubMed  CAS  Google Scholar 

  • Spudich, J. L., 1985, Color-sensing by phototactic Halobacterium halobium, in: “Sensory Perception and Transduction in Aneural Organisms,” G. Colombetti, F. Lenci, and P.-S. Song, eds., Plenum Press, New York.

    Google Scholar 

  • Spudich, J. L., and Bogomolni, R. A., 1983a, Spectral and chemical discrimination of hR and sR, Biophys. J., 41, 21a.

    Google Scholar 

  • Spudich, J. L., and Bogomolni, R. A., 1983b, Spectroscopic discrimination of the three rhodopsin-like pigments in Halobacterium halobium membranes, Biophys. J., 43:243–246.

    Article  CAS  Google Scholar 

  • Spudich, J. L., and Stoeckenius, W., 1979, Photosensory and chemosensory behavior of Halobacterium halobium, Photobiochem. Photobiophys., 1:43–53.

    CAS  Google Scholar 

  • Stoeckenius, W., Lozier, R. H., and Bogomolni, R. A., 1979, Bacteriorhodopsin and the purple membrane of halobacteria, Biochim. Biophys. Acta, 505:215–278.

    PubMed  CAS  Google Scholar 

  • Strange, P. G., and Koshland, Jr., D. E., 1976, Receptor interactions in a signalling system: Competition between ribose receptor and galactose receptor in the chemotaxis response, Proc. Natl. Acad. Sci. USA, 73:762–766.

    Article  PubMed  CAS  Google Scholar 

  • Sumper, M., Reitmeier, H., and Oesterhelt, D., 1976, Biosynthesis of the purple membrane of halobacteria, Angew. Chem. Int. Ed. Engl., 15:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Traulich, B., Hildebrand, E., Schimz, A., Wagner, G., and Lanyi, J. K., 1983, Halorhodopsin. and photosensory behavior in Halobacterium halobium mutant strain L-33, Photochem. Photobiol., 37:577–580.

    Article  CAS  Google Scholar 

  • Wagner, G., 1984, Blue light effects in halobacteria, in: “Blue Light Effects in Biological Systems,” H. Senger, ed., Springer Verlag, Berlin, Heidelberg, pp. 48–54.

    Google Scholar 

  • Zukin, R. S., Hartig, P. R., and Koshland, Jr., D. E., 1977, Use of a distant reporter group as evidence for a conformational change in a sensory receptor, Proc. Natl. Acad. Sci. USA, 74:1932–1936.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this paper

Cite this paper

Hildebrand, E., Schimz, A. (1985). Sensory Transduction in Halobacterium . In: Colombetti, G., Lenci, F., Song, PS. (eds) Sensory Perception and Transduction in Aneural Organisms. NATO ASI Series, vol 89. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2497-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2497-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9511-2

  • Online ISBN: 978-1-4613-2497-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics