Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 89))

Abstract

Physical constraints limit the way in which an organism as small as Escherichia coli can interact with its surroundings. Cells are propelled by the movement of thin helical flagella, because motion is dominated by viscous rather than inertial forces. Cells are unable to swim in straight lines because of perturbations due to rotational Brownian movement. Cells are unable to improve their lot locally by swimming or stirring, because transport of small molecules is effected by diffusion rather than bulk flow. Cells must sense gradients temporally rather than spatially, because comparison between concentrations in front and behind are overwhelmed by diffusive currents due to the cells’ motion. Finally, the precision with which cells can make temporal comparisons are limited by statistical fluctuations. A survey of these constraints is given, followed by a description of how E. coli has optimized its chemotaxis machinery to meet them. This optimization is revealed by measurements of the chemotactic impulse response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., 1969, Chemoreceptors in bacteria, Science, 166: 1588–1597.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. A., 1975, Formation of the bacterial flagellar bundle, in: “Swimming and Flying in Nature,” T. Y.-T. Wu, C. J. Brokaw, and C. Brennen, eds., Plenum, New York, 1: 45–56.

    Google Scholar 

  • Berg, H. C., 1975, Bacterial movement, in: “Swimming and Flying in Nature,” T. Y.-T. Wu, C. J. Brokaw, and C. Brennen, eds., Plenum, New York, 1: 1–11.

    Google Scholar 

  • Berg, H. C., 1983, “Random Walks in Biology,” Princeton, Princeton.

    Google Scholar 

  • Berg, H. C., and Anderson, R. A., 1973, Bacteria swim by rotating their flagellar filaments, Nature, 245: 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and Brown, D. A., 1972, Chemotaxis of Escherichia coli analysed by three-dimensional tracking, Nature, 239: 500–504.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J., 20: 193–219.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C., and Tedesco, P. M., 1975, Transient response to chemotactic stimuli in Escherichia coli, Proc. Natl. Acad. Sci. USA, 72: 3235–3239.

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., Segall, J. E., and Berg, H. C., 1982, Impulse responses in bacterial chemotaxis, Cell, 31: 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Block, S. M., Segall, J. E., and Berg, H. C., 1983, Adaptation kinetics in bacterial chemotaxis, J. Bacteriol., 154: 312–323.

    PubMed  CAS  Google Scholar 

  • Brennen, C., and Winet, H., 1977, Fluid mechanics of propulsion by cilia and flagella, Annu. Rev. Fluid Mech., 9: 339–398.

    Article  Google Scholar 

  • Brown, D. A., and Berg, H. C., 1974, Temporal stimulation of chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. USA, 71: 1388–1392.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, A., Segall, J. E., Block, S. M., and Berg, H. C., 1983, Coordination of flagella on filamentous cells of Escherichia coli, J. Bacteriol., 155: 228–237.

    PubMed  CAS  Google Scholar 

  • Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W.-W., and Adler, J., 1974, Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli, Nature, 249: 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., 1977, Bacterial flagella rotating in bundles: A study in helical geometry, Proc. Natl. Acad. Sci. USA, 74: 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., and Han, D. P., 1983, Asynchronous switching of flagellar motors on a single bacterial cell, Cell, 32: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., and Ornston, M. K., 1977, Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quartenary structure by mechanical force., J. Mol. Biol., 112: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, E. M., 1977, Life at low Reynolds number, Am. J. Phys., 45: 3–11.

    Article  Google Scholar 

  • Schiffmann, E., 1982, Leukocyte chemotaxis, Annu. Rev. Physiol., 44: 553–568.

    Article  PubMed  CAS  Google Scholar 

  • Segall, J. E., 1984, Chemotaxis of Escherichia coli studied using iontophoretic stimulation, Ph.D. Thesis, California Institute of Technology, Pasadena.

    Google Scholar 

  • Silverman, M., and Simon, M., 1974, Flagellar rotation and the mechanism of bacterial motility, Nature, 249: 73–74.

    Article  PubMed  CAS  Google Scholar 

  • Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science, 213: 830–837.

    Article  PubMed  CAS  Google Scholar 

  • Spudich, J. L., and Koshland, Jr., D. E., 1975, Quantitation of the sensory response in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA, 72: 710–713.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this paper

Cite this paper

Berg, H.C. (1985). Physics of Bacterial Chemotaxis. In: Colombetti, G., Lenci, F., Song, PS. (eds) Sensory Perception and Transduction in Aneural Organisms. NATO ASI Series, vol 89. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2497-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2497-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9511-2

  • Online ISBN: 978-1-4613-2497-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics