Skip to main content

Molecular Mechanisms of Photoinduced Chloroplast Movements

  • Conference paper
Sensory Perception and Transduction in Aneural Organisms

Part of the book series: NATO ASI Series ((NSSA,volume 89))

Abstract

Cell metabolism requires that substrates, intermediates, co-factors, messengers, and enzymes must be able to move from one part of the cytoplasm to another. In small cells, such as bacteria or even most animal cells, diffusion is sufficient for small solutes to move over distances comparable to the size of the cell in fractions of a second. However, plant cells, because of their cell walls, vacuoles, and turgor, are able to grow very large. They are commonly more than 100 μm long, while some are few millimeters or even centimeters long. Diffusion is relatively ineffective over such distances, as the time needed for a molecule to reach its destination by diffusion alone depends on the square of the distance involved. It is not surprising, therefore, that large plant cells display an extensive cytoplasmic streaming that stirs their cytoplasm and moves material including chloroplasts around.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, “Molecular Biology of the Cell,” Garland, New York.

    Google Scholar 

  • Altmüller, D., Grolig, F., and Wagner, G., 1984, Calcium sequestration and protein phosphorylation in the green alga Mougeotia sp., Eur. J. Cell Biol., Suppl., 5:3

    Google Scholar 

  • Blatt, M. R., Weisenseel, M. H., and Haupt, W., 1981, A light-dependent current associated with chloroplast aggregation in the alga Vaucheria sessilis, Planta, 152:513.

    Article  CAS  Google Scholar 

  • Blatt, M. R., Wessells, N. K., and Briggs, W. R., 1980, Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis, Planta, 147:363.

    Article  CAS  Google Scholar 

  • Britz, S. J., 1979, Chloroplast and nuclear migration, in:“Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer, Berlin, pp. 170–205.

    Google Scholar 

  • Carter, S. B., 1967, Effects of cytochalasins on mammalian cells, Nature, 213:261.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science, 207:19.

    Article  PubMed  CAS  Google Scholar 

  • Cormier, M. J., Charbonneau, H., and Jarrett, H. W., 1981, Plant and fungal calmodulin: Ca2+-dependent regulation of plant NAD kinase, Cell Calcium, 2:313.

    Article  PubMed  CAS  Google Scholar 

  • Corti, B., 1774, Osservationi microscopiche sulla tremelle e sulla circulazione del fluido in una pianata aquajuola, Lucca.

    Google Scholar 

  • Corti, B., 1776, Sur la circulation d’un fluide, de’couverti en diverses plantes, Rosier obs. sur la Physique, sur l’Histoire Nat., 8:232.

    Google Scholar 

  • Doughty, M. J., and Diehn, B., 1982, Photosensory transduction in the flagellated alga, Euglena gracilis, Biochim. Biophys. Acta, 682:32.

    Article  CAS  Google Scholar 

  • Dreizen, P., and Gershman, L. C., 1970, Molecular basis of muscular contraction: Myosin, Transact. NY Acad. Sci., Ser. 11, Vol. 32:170.

    CAS  Google Scholar 

  • Dreyer, E. M., and Weisenseel, M. H., 1979, Phytochrome-mediated uptake of calcium in Mougeotia cells, Planta, 146:31.

    Article  CAS  Google Scholar 

  • Filner, Ph., and Yadav, N. S., 1979, Role of microtubules in intracellular movements, in: “Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer, Berlin, pp. 95–113.

    Google Scholar 

  • Goldman, R. D., 1975, The use of heavy meromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin-like microfilaments in nonmuscle cells, J. Histochem. Cytochem., 23:529.

    Article  PubMed  CAS  Google Scholar 

  • Hale, II, C. C., and Roux, S. J., 1980, Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells, Plant Physiol., 65:658.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, W., 1970, Hellrot- und Dunkelrot-Wechselwirkungen bei der Chloroplastendrehung von Mougeotia, Wiss. Zeitschrif t Ernst-Moritz-Arndt-Universität Greifswald, 19:47.

    Google Scholar 

  • Haupt, W., 1982, Light-mediated movement of chloroplasts, Annu. Rev. Plant Physiol., 33:205.

    Article  CAS  Google Scholar 

  • Haupt, W., 1983, Movement of chloroplasts under the control of light, Prog. Phycol. Res., 2:228.

    Google Scholar 

  • Haupt, W., and Schöbohm, E., 1970, Light-oriented chloroplast movements, in: “Photobiology of Microorganisms,” P. Halldal, ed., Wiley-Interscience, London, pp. 283–307.

    Google Scholar 

  • Haupt, W., and Wagner, G., 1984, Chloroplast movement, in: “Membranes and Sensory Transduction,” G. Colombetti and F. Lenci, eds., Plenum, New York, pp. 331–375.

    Google Scholar 

  • Hope, A. B., and Walker, N. A., 1975, “The Physiology of Giant Algal Cells,” University Press, Cambridge.

    Google Scholar 

  • Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol., 7:281.

    Article  CAS  Google Scholar 

  • Isenberg, G., and Wohlfarth-Bottermann, K. E., 1976, Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin, Cell. Tiss. Res., 173:495.

    Article  CAS  Google Scholar 

  • Ishikawa, H., Bishoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol., 43:312.

    Article  PubMed  CAS  Google Scholar 

  • Klein, K., 1981, Feinstrukturelle Untersuchungen zur Bewegung des Mougeotia-Chloroplasten, Ph.D. Thesis, Univ. Erlangen-Nürnberg.

    Google Scholar 

  • Klein, K., Wagner, G., and Blatt, M. R.., 1980, Heavy-meromyosin-decoration of microfilaments from Mougeotia protoplasts, Planta, 150:354.

    Article  CAS  Google Scholar 

  • Korn, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev., 62:672.

    PubMed  CAS  Google Scholar 

  • Kuroda,,K., and Manabe, E., 1983, Microtubule-associated cytoplasmatic streaming in Caulerpa, Proc. Jpn. Acad., 59:131.

    Article  Google Scholar 

  • Marchant, H. J.,1976, Actin in the green algae Coleochaete and Mougeotia, Planta, 131:119.

    Article  CAS  Google Scholar 

  • Marmé, D., and Dieter, P., 1983, Role of Ca2+ and calmodulin in plants, in: “Calcium and Cell Function,” Vol. 4, W. Y. Cheung, ed., Academic Press, New York.

    Google Scholar 

  • Montavon, M., Horwitz, B. A., and Greppin, H., 1983, Far-red light-induced changes in intracellular potentials of spinach mesophyll cells, Plant Physiol., 73:671.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, R., and Hayama, T., 1979, Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells, J. Cell Sci., 36:121.

    PubMed  CAS  Google Scholar 

  • Penningroth, S. M., Cheung A., Bonchard, Ph., Gagnon, C., and Bardin, C. W., 1982, Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2(hydroxynonyl)] adenine, Biochem. Biophys. Res. Commun., 104:234.

    Article  PubMed  CAS  Google Scholar 

  • Rogler, S., 1980, Fluoreszenzmikroskopische Untersuchungen über die Calcium-Verteilung in Mougeotia, Diploma, Univ. Erlanger-Nürnberg.

    Google Scholar 

  • Rossbacher, R., 1980, Röntgenmikroanalytische Untersuchungen zur Kompartimentierung von-Calcium and anderer Ionen bei der Grünalge Mougeotiaspec., Diploma, Univ. Erlangen-Nürnberg.

    Google Scholar 

  • Rossbacher, R., Wagner, G., and Pallaghy, Ch. K., 1984, X-ray microanalysis of calcium in fixed and in shock-frozen hydrated green algal cells: Mougeotia, Spirogyra and Zygnema, Nucl. Instr. Meth. Phys. Res., B3:664.

    Article  Google Scholar 

  • Roux, S. J., 1984, Ca2+ and phytochrome action in plants, BioScience, 34:25.

    Article  PubMed  CAS  Google Scholar 

  • Roux, S. J., McEntire, K., Slocum, R. D., Cedel, T. E., and Hale, C. C., 1981, Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats, Proc. Natl. Acad. Sci. USA, 78:283.

    Article  PubMed  CAS  Google Scholar 

  • Rüdiger, W., 1983, Chemistry of the phytochrome photoconversion, Phil. Trans. R. Soc. London, B303:377.

    Google Scholar 

  • Sabnis, D. D., and Jacobs, W. P., 1967, Microtubules in the Coenocytic marine alga, Caulerpa prolifera, J. Cell Sci., 2:465.

    PubMed  CAS  Google Scholar 

  • Saunders, M. J., and Hepler, P. K., 1983, Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation in Funaria, Developmental Biol., 99:41.

    Article  CAS  Google Scholar 

  • Schönbohm, E., 1973, Die lichtinduzierte Verankerung der Plastiden in cytoplasmatischem Wandbelag: Eine phytochromgesteuerte Kurzzeitreaktion, Ber. Deutsch. Bot. Ges., 83:423.

    Google Scholar 

  • Schönbohm, E., 1980, Phytochrome and non-phytochrome dependent blue light effects in intracellular movements in fresh water algae, in: “The Blue Light Syndrome,” H. Senger, ed., Springer, Berlin.

    Google Scholar 

  • Seitz, K., 1979, Cytoplasmic streaming and cyclosis of chloroplasts, in: “Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer Berlin, pp. 150–169.

    Google Scholar 

  • Seitz, K., 1982, Chloroplast motion in response to light in aquatic vascular plants, in: “Studies on Aquatic Plants,” J. J. Symoens, S. S. Hooper, and P. Compère, eds., Roy. Soc. Belg., Brüssel.

    Google Scholar 

  • Serlin, B. S., and Roux, S. J.,1984, Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+-ionophore, A 23187, and by calmodulin antagonists, Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  • Song, P.-S., 1983, Protozoan and related photoreceptors: Molecular aspects, Annu. Rev. Biophys. Bioeng., 12:35.

    Article  PubMed  CAS  Google Scholar 

  • Stockem, W., Weber, K., and Wehland, J., 1978, The influence of micro-injected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum, Cytobiologie, 18:114.

    PubMed  CAS  Google Scholar 

  • Wagner, G., 1979, Actomyosin as a basic mechanism of movement in animals and plants, in: “Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer, Berlin, pp. 114–126.

    Google Scholar 

  • Wagner, G., and Bellini, E., 1976, Light-dependent fluxes and compartmentation of calcium in the green alga Mougeotia, Z. Pflanzenphysiol., 79:283.

    CAS  Google Scholar 

  • Wagner, G., and Klein, K., 1978, Differential effect of calcium on chloroplast movement in Mougerotia, Photochem. Photobiol., 27:137.

    Article  CAS  Google Scholar 

  • Wagner, G., and Klein, K., 1981, Mechanism of chloroplast movement in Mougeotia, Protoplasma190:169.

    Article  Google Scholar 

  • Wagner, G., and Rossbacher, R., 1980, X-ray microanalysis and chlorotetracycline staining of calcium vesicles in the green alga Mougeotia, Planta, 149:298.

    Article  CAS  Google Scholar 

  • Wagner, G., Valentin, P., Dieter, P., and Marmé, D., 1984, Identification of calmodulin in the green alga Mougeotia and its possible function in chloroplast reorientational movement, Planta, 162:62

    Article  CAS  Google Scholar 

  • Wehland, J., Osborn, M., and Weber, K., 1980, Phalloidin associates with microfilaments after microinjection into tissue culture cells, Eur. J. Cell. Biol., 21:188.

    PubMed  CAS  Google Scholar 

  • Wieland, Th., 1977, Modifications of actins by phallotoxins, Naturwissenschaften, 64:303.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R., 1975, Cytoplasmic streaming in Chara: A model activated by ATP and inhibited by cytochalasin BJ. Cell Sci., 17:655.

    PubMed  CAS  Google Scholar 

  • Williamson, R. E., and Ashley, C. C., 1982, Free Ca2+ and cytoplasmic streaming in the alga Chara, Nature, 296:1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this paper

Cite this paper

Wagner, G., Grolig, F. (1985). Molecular Mechanisms of Photoinduced Chloroplast Movements. In: Colombetti, G., Lenci, F., Song, PS. (eds) Sensory Perception and Transduction in Aneural Organisms. NATO ASI Series, vol 89. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2497-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2497-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9511-2

  • Online ISBN: 978-1-4613-2497-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics