Skip to main content

Phytochrome Regulation of Plant Development at the Whole Plant, Physiological, and Molecular Levels

  • Conference paper
Sensory Perception and Transduction in Aneural Organisms

Part of the book series: NATO ASI Series ((NSSA,volume 89))

Abstract

Of the many environmental factors which play a role in the survival, growth, and reproduction of green plants, light is among the most crucial. Not only does it drive the process of photosynthesis, through which its energy is transduced through the photosynthetic pigments into usable chemical form, but it also provides vital environmental information which can affect seed germination, leaf growth, stem growth, flowering, and a host of other processes. Such effects of light, in which it provides an environmental cue to trigger a given response, rather than providing a direct energy source for the response itself, collectively define the field of photomorphogenesis. An excellent series of review articles on photomorphogenesis was recently edited by Shropshire and Mohr (1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blaauw, O. H., Blaauw-Jansen, G., and van Leeuwen, W. J., 1968, An irreversible red-light-induced growth response in Avena, Planta, 82:87–104.

    Article  Google Scholar 

  • Blaauw-Jansen, G., 1974, Dose-response curves for phytochrome-mediated anthocyanin synthesis in the mustard seedling, Acta Botanica Neerlandica, 23:513–519.

    CAS  Google Scholar 

  • Blaauw-Jansen, G., 1983, Thoughts on the possible role of phytochrome destruction in phytochrome-controlled responses, Plant Cell Environ., 6:173–179.

    CAS  Google Scholar 

  • Blaauw-Jansen, G., and Blaauw, O. H., 1975, A shift in the response threshold to red irradiation in dormant lettuce seeds, Acta Botanica Neerlandia, 24:199–202.

    Google Scholar 

  • Boardman, N. K., Anderson, J. M., and Goodchild, D. J., 1978, Chlorophyll-protein complexes and structures of mature and developing chloroplasts, Curr. Top. Bioenerget. B 8:35–109.

    CAS  Google Scholar 

  • Briggs, W. R., 1963, Red light, auxin relationships, and the phototropic responses of corn and oat coleoptiles, Am. J. Botan., 50:196–207.

    Article  CAS  Google Scholar 

  • Briggs, W. R., and Chon, H. P., 1966, The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles, Plant Physiol., 41:1159–1166.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, W. R., and Iino, M., 1983, Blue-light-absorbing photoreceptors in plants, Phil. Trans. Roy. Soc. Lond. B., 303:347–359.

    Article  CAS  Google Scholar 

  • Briggs, W. R., and Siegelman, H. W., 1965, Distribution of phytochrome in etiolated seedlings, Plant Physiol., 40:934–941.

    Article  PubMed  CAS  Google Scholar 

  • Butler, W. L., Norris, K. H., Siegelman, H. W., and Hendricks, S. B., 1959, Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants, Proc. Natl. Acad. Sci. USA, 45:1703–1708.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, R. E., 1982, The mechanism of auxin-induced proton efflux, in:“Plant Growth Substances 1982,” Proceedings of the 11th International Conference on Plant Growth Substances, P. F. Wareing, ed., Academic Press, London, pp. 23–31.

    Google Scholar 

  • Colbert, J. T., Hershey, H. P., and Quail, P. H., 1983, Autoregulatory control of translatable phytochrome mRNA levels, Proc. Natl. Acad. Sci. USA, 80:2248–2252.

    Article  PubMed  CAS  Google Scholar 

  • Coruzzi, G., Broglie, R., Cashmore, A., and Chua, N.-H., 1983, Nucleotide sequences for two pea cDNA clones encoding for the small subunit of ribulose-1, 5-bisphosphate carboxylase and the major chlorophyll a/b binding thylakoid polypeptide, J. Biol. Chem., 258:1399–1402.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D. J., 1981, Rapid suppression of growth by blue light. Occurrence, time course, and general characteristics, Plant Physiol., 67:584–590.

    Article  PubMed  CAS  Google Scholar 

  • Dunsmuir, P., Smith, S. M., and Bedbrook, J., 1983, The major chlorophyll a/b binding protein of petunia is composed of several polypeptides encoded by a number of distinct nuclear genes, J. Mol. Appl. Gen., 2:285–300.

    CAS  Google Scholar 

  • Dunsmuir, P., Smith, S. M., and Bedbrook, J., 1983, A number of different nuclear genes for the small subunit of RuBCase are transcribed in Petunia, Nucl. Acid Res., 11:4177–4183.

    Article  CAS  Google Scholar 

  • Fredricq, H., Rethy, R., van Onckelen, H., and de Greef, J. A., 1983, Synergism between gibberellic acid and low Pfr levels inducing germination of Kalenchöe seeds, Physiol Plantarum, 57:402–406.

    Article  Google Scholar 

  • Fukshansky, L., and Schäfer, E., 1983,. Models in photomorphogenesis, in:“Encyclopedia of Plant Physiology, New Series,” W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag Berlin, pp. 69–95.

    Google Scholar 

  • Gallagher, T. F., and Ellis, J. R.; 1982, Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei, EMBO J, 1:1493–1498.

    PubMed  CAS  Google Scholar 

  • Gardner, G. Pike, C. S., Rice, H. V., and Briggs, W. R., 1971, ‘Disaggregation’ of phytochrome in vitro — a consequence of proteolysis, Plant Physiol., 48:686–693.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, R. H., 1941, On the inhibition of the first internode of Avenaby light, Am. J. Botan., 28:325–332.

    Article  Google Scholar 

  • Hahn, T.-R., Song, P.-S., Quail, P. H., and Vierstra, R. D., 1984, Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight, Plant. Physiol., 74:755–758.

    Article  PubMed  CAS  Google Scholar 

  • Hand, D. J., Craig, G., Takaki, M., and Kendrick, R. E., 1982, Interaction of light and temperature on seed germination of Rumex obtusifolius L., Planta, 156:457–460.

    Article  CAS  Google Scholar 

  • Hartmann, K. M., 1966, A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome, Photochem. Photobiol., 5:349–366.

    Article  CAS  Google Scholar 

  • Hendricks, S. B., and VanDerWoude, W. J., 1983, How phytochrome acts — perspectives on the continuing quest, in:“Encyclopedia of Plant Physiology, New Series,” 16A, W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag, Berlin, pp, 3–23.

    Google Scholar 

  • Hershey, H. P., Colbert, J. T., Lissemore, J. L., Barker, R. F., and Quail, P. H., 1984, Molecular cloning of cDNA for Avena phytochrome, Proc. Natl. Acad. Sci. USA, 81:2332–2336.

    Article  PubMed  CAS  Google Scholar 

  • Hock, B., and Mohr, H., 1964, Die Regulation der O2 Aufnahme von Senfkeimlingen (Sinapis alba L.) durch Licht, Planta, 61:209–228.

    Article  CAS  Google Scholar 

  • Iino, M., and Carr, D. J., 1981, Safelight for photomorphogenic studies:Infrared radiation and infrared-scope, Plant Sci. Lett., 23:263–268.

    Article  Google Scholar 

  • Iino, M., 1982a, Action of red light on the indole-3-acetic acid status and growth in coleoptiles of etiolated maize seedlings, Planta, 156:21–32.

    Article  CAS  Google Scholar 

  • Iino, M., 1982b, Inhibitory action of red light on the growth of maize mesocotyl:Evaluation of the auxin hypothesis, Planta, 156:338–395.

    Google Scholar 

  • Jenkins, G. I., Hartley, M. R., and Bennett, J., 1983, Photoregulation of chloroplast development:Transcriptional, translational and post-translational controls? Phil. Trans. Ray. Soc. Lond. B, 303:419–431.

    Article  CAS  Google Scholar 

  • Kaufman, L. S., Briggs, W. R., and Thompson, W. F., 1985, Phytochrome control of specific mRNA levels in developing pea buds:The presence of both very low fluence and low fluence responses. Plant Physiol., submitted.

    Google Scholar 

  • Kaufman, L. S., Thompson, W. F., and Briggs, W. R., 1983, Phytochrome control of specific mRNA levels in developing pea buds:The presence of low and very low fluence responses, Carnegie Institution of Washington Year Book, 82; 15–17

    Google Scholar 

  • Kaufman, L. S., Thompson, W. F., and Briggs, W. R., 1984, Phytochrome induced accumulation of RNA encoding the small subunit of RuBPcase requires ten thousand fold more red light than does the RNA for the chlorophyll a/b binding protein, Science, in press.

    Google Scholar 

  • Lamb., C. J., and Lawton, M. A., 1983, Photocontrol of Gene Expression, in:“Encyclopedia of Plant Physiology, New series,” 16A, W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag, Berlin, pp. 213–287.

    Google Scholar 

  • Mancinelli, A. L., and Rabino, E., 1978, The “high irradiance response” of plant photomorphogenesis, Bot. Rev., 44:129–180.

    Article  CAS  Google Scholar 

  • Mandoli, D. F., and Briggs, W. R., 1981, Phytochrome control of two low-irradiance responses in etiolated oat seedlings, Plant Physiol., 67:733–739.

    Article  PubMed  CAS  Google Scholar 

  • Mandoli, D. F., and Briggs, W. R., 1982, The photoperceptive sites and the function; of tissue light piping in photomorphogenesis of etiolated oat seedlings, Plant Cell Environ., 5:137–145.

    Google Scholar 

  • Mohr, H., 1966, Differential gene activation as a mode of action of phytochrome 730, Photochem. Photobiol., 5:469–483.

    Article  CAS  Google Scholar 

  • Mohr, H., 1974, The role of phytochrome in controlling enzyme levels in plants, in:“Biochemistry of Cell Differentiation,” J. Paul, ed., Butterworth, London, pp. 37–81

    Google Scholar 

  • Mohr, H., 1977, Phytochrome and chloroplast development, Endeavor (n.s.), 1:107–114.

    Article  CAS  Google Scholar 

  • Mösinger, E., and Schäfer, E., 1984, In-vivo phytochrome control of in vitro transcription rates in isolated nuclei from oat seedlings, Planta, 161:444–450.

    Article  Google Scholar 

  • Pratt, L. H., 1982, Phytochrome:The protein moiety, Annu. Rev. Plant Physiol., 33:557–582.

    Article  CAS  Google Scholar 

  • Pratt, L. H., and Briggs, W. R., 1966, Photochemical and nonphotochemical reactions of phytochrome in vivo, Plant Physiol., 41:467–474.

    Article  PubMed  CAS  Google Scholar 

  • Quail, P. H., 1983, Rapid action of phytochrome in photomorphogenesis, in:“Encyclopedia of Plant Physiology, New Series,” 16A, W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag, Berlin, pp. 178–212.

    Google Scholar 

  • Quail, P. H., Colbert, J. T., Hershey, H. P., and Vierstra, R. D., 1983, Phytochrome:Molecular properties and biogenesis, Phil. Trans. Roy. Soc. Lond. B., 303:387–402.

    Article  CAS  Google Scholar 

  • Raven, J. A., 1983, Do plant photoreceptors act at the membrane level, Phil. Traps. Roy. Soc. Lond. B, 303:403–417.

    Article  CAS  Google Scholar 

  • Rüdiger, W., and Scheer, H., 1983, Chromophores in photomorphogenesis, in:“Encyclopedia of Plant Physiology, New Series.,” 16A, W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag, Berlin, pp. 119–151.

    Google Scholar 

  • Satter, R. L., and Galston, A. W., 1976, The physiological functions of phytochrome, in:“Chemistry and Biochemistry of Plant Pigments,” 2nd edit., T. W. Goodwin, ed., Academic Press, London, pp. 681–735.

    Google Scholar 

  • Schaer, J. A., Mandoli, D. F., and Briggs, W. R., 1983, Phytochrome-mediated cellular photomorphogenesis, Plant Physiol., 72:706–712.

    Article  PubMed  CAS  Google Scholar 

  • Senger, H., 1982, The effect of blue light on plants and microorganisms, Photochem. Photobiol., 35:911–920.

    Article  CAS  Google Scholar 

  • Shinkle, J. R., and Briggs, W. R., 1984, IAA sensitization of phytochrome-controlled growth of coleoptile sections, Proc. Natl. Acad. Sci. USA, 81:3742–3746.

    Article  PubMed  CAS  Google Scholar 

  • Shropshire, Jr., W., and Mohr, H., ed., 1983, “Encyclopedia of Plant Physiology, New Series,” 16A, 16B, Springer-Verlag, Berlin, p. 832.

    Google Scholar 

  • Silverthorne, J., and Tobin, E., 1984, Demonstration of transcriptional regulation of specific genes by phytochrome action, Proc. Natl. Acad. Sci. USA, 81:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Small, J. G. C., Spruit, C. J. P., Blaauw-Jansen, G., and Blaauw, O. H., 1979, Action spectra for light-induced germination in dormant lettuce seeds, Planta, 144:125–131.

    Article  CAS  Google Scholar 

  • Smith, H., and Morgan, D. C., 1983, The function of phytochrome in nature, in:“Encyclopedia of Plant Physiology, New Series,” 16A, W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag, Berlin, pp. 491–517.

    Google Scholar 

  • Smith, W. O., 1983, Phytochrome as a molecule, in:“Encyclopedia of Plant Physiology, New Series,” 15A, W. Shropshire, Jr., and H. Mohr, eds., Springer-Verlag, Berlin, pp. 96–118.

    Google Scholar 

  • Stiekema, W. J., Wimpee, C. F., Silverthorne, J., and Tobin, E. M., Phytochrome control of two nuclear genes encoding chloroplast proteins in Lemna gibba L. G3, Plant Physiol, 72:717–724.

    Google Scholar 

  • Thompson, W. F., Everett, M., Polans, N. O., Jorgensen, R. A., and Palmer, J. D., 1983, Phytochrome control of RNA levels in developing pea and mung bean leaves, Planta, 158:487–500.

    Article  CAS  Google Scholar 

  • Vanderhoef, L. N., Quail, P. H., and Briggs, W. R., 1979, Red light-inhibited mesocotyl elongation in maize seedlings, Plant Physiol., 63:1062–1067.

    Article  PubMed  CAS  Google Scholar 

  • VanDerWoude, W. J., 1983, Mechanisms of photothermal interactions of phytochrome control of seed germination, in:“Strategies of Plant Reproduction,” Beltsville Symposium on Agricultural Research, Vol. 6, W. J. Meudt, ed., Allanneld Osmun, Totawa, NJ, USA, pp. 234–244.

    Google Scholar 

  • Vierstra, R. D., and Quail, P. H., 1982, Native phytochrome:Inhibition of proteolysis yields a homogeneous monomer of 124 kilodaltons from Avena, Proc. Natl. Acad. Sci. USA, 79:5272–5276.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this paper

Cite this paper

Briggs, W.R., Mandoli, D.F., Shinkle, J.R., Kaufman, L.S., Watson, J.C., Thompson, W.F. (1985). Phytochrome Regulation of Plant Development at the Whole Plant, Physiological, and Molecular Levels. In: Colombetti, G., Lenci, F., Song, PS. (eds) Sensory Perception and Transduction in Aneural Organisms. NATO ASI Series, vol 89. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2497-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2497-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9511-2

  • Online ISBN: 978-1-4613-2497-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics