Skip to main content

Catalases and Peroxidases

  • Chapter
Biochemistry of Dioxygen

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

Abstract

Catalase is the enzyme that catalyzes the decomposition of hydrogen peroxide to water and dioxygen. The usual sources of catalase are bovine liver and bovine erythrocytes. The enzyme exists as a 250,000–dalton tetramer with one heme per monomer. The complete amino acid sequence of the bovine liver enzyme is known (Schroeder et al., 1982) as well as much of the sequence of the bovine erythrocyte catalase (Schroeder et al., 1982). The crystal structure of the beef liver enzyme has been determined (Reid et al., 1981; Murthy et al., 1981). The heme is buried in the enzyme accessible only by a 20–Å hydrophobic channel. There is a tyrosine group on one side of the heme and an asparagine and a histidine on the other. The negative charge of the tyrosine probably aids in the stability of the 4 + iron (Reid et al., 1981) intermediate to be discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aneshansky, D. J., Eisner, T., Widom, J. M., and Widom, B., 1969. Biochemistry at MOT: Explosive secretory discharge of bombardier beetles (Brachinus), Science165: 61 – 63.

    Google Scholar 

  • Araiso, T., Miyoshi, K., and Yanozaki, 1., 1976. Mechanisms of electron transfer from sulfite to horseradish peroxidase-hydroperoxide compounds, Biochemistry15: 3059 – 3063.

    Article  PubMed  CAS  Google Scholar 

  • Champion, P. M., Munck, E., Debrunner, P. G., Hollenberg, P. F., and Hager, L. P., 1973. Mossbauer investigations of chloroperoxidase and its halide complexes, Biochemistry12: 426 – 435.

    Article  PubMed  CAS  Google Scholar 

  • Champion, P. M., Lipscomb, T. D., Munck, E., Debrunner, P. and Gunsalus, I. C. 1975a. Mossbauer investigations of high-spin ferrous heme proteins I cytochrome P-450. Biochem14: 4151 – 4158.

    Article  CAS  Google Scholar 

  • Champion, P. M., Chiang, R., Munck, E., Debrunner, P. and Hager, L. P. 1975b. Mossbauer investigations of high-spin ferrous heme proteins II. Chloroperoxidase, horseradish peroxidase, and hemoglobin. Biochem14: 4159 – 4166.

    Article  CAS  Google Scholar 

  • Champion, P. M., Gunsalus, I. C., Wagner, C. C. 1978. Resonance Raman investigations of cytochrome P-450 CAM from Pseudomonas putida, J. Am. Chem. Soc. 100: 3743 – 3751.

    Article  CAS  Google Scholar 

  • Champion, P. M., Gunsalus, I. C., and Wagner, G. C., 1978. Resonance Raman investigations of cytochrome P450CAM from Pseudomonas putida, J. Am. Chem. Soc. 100: 3743 – 3751.

    Article  CAS  Google Scholar 

  • Chan, H. W.-S., 1971. Singlet oxygen analogs in biological systems: Peroxidase-catalyzed oxygenation of 1,3-dienes, J. Am. Chem. Soc.93: 4632 – 4633.

    Article  PubMed  CAS  Google Scholar 

  • Chin, D.-H., Balch, A. L., and LaMar, G. N., 1980. Formation of porphyrin ferryl (Fe02+ +) complexes through the addition of nitrogen bases to peroxo-bridged iron (III) porphyrins, J. Am. Chem. Soc.102: 1446 – 1448.

    Article  CAS  Google Scholar 

  • Cilento, G., 1975. Dioxetanes as intermediates in biological processes, J. Theor. Biol.55: 471 – 479.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, S. P., Dawson, J. H., Hodgson, K. O., and Hager, L. P., 1978. Studies on the ferric forms of cytochrome P450 and chloroperoxidase by extended X-ray absorption fine structure: Characterization of the Fe-N and Fe-S, distances, J. Am. Chem. Soc. 100:7282–7290

    Article  CAS  Google Scholar 

  • Davis, M. S., Forman, A., and Fajer, J., 1979a. Ligated chlorophyll cation radicals: Their function in photosystem II of plant photosynthesis, Proc. Natl. Acad. Sci. U.S.A.76: 4170 – 4174.

    Article  CAS  Google Scholar 

  • Davis, M. S., Forman, A., Hanson, L. K., Thornber, J. P., and Fajer, J., 1979b. Anion and cation radicals of bacteriochlorophyll and bacteriopheo-phytin b: Their role in the primary charge separation of Rhodopseudomonas viridis, J. Phys. Chem. 83: 3325 – 3332.

    Article  CAS  Google Scholar 

  • Dawson, S. H., Trudell, I. R., Barth, D., Linder, R. D., Bunnenberg, E., Djerassi, C., Chang, R., and Hager, L. P., 1976. Chloroperoxidase evidence for a P450 type heme environment from magnetic circular dichroism spectroscopy, J. Am. Chem. Soc.98:3709–3710

    Article  PubMed  CAS  Google Scholar 

  • Di Nello, R. K., and Dolphin, D., 1979. The role of protein and porphyrin in the reactivity of horseradish peroxidase toward hydrogen donors, Biochem. Biophys. Res. Commun.86: 190 – 198.

    Article  Google Scholar 

  • Dolphin, D., and Felton, R. H., 1974. The biochemical significance of porphyrin cation radicals, Acc. Chem. Res.7: 26 – 32.

    Article  CAS  Google Scholar 

  • Dolphin, D., Forman, A., Borg, D. C., Fajer, J., and Felton, H. H., 1971. Compounds I of catalase and peroxidase: 7r-Cation radicals, Proc. Natl. Acad. Sci.68: 614 – 618.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, D., Muljiani, A., Rousseau, K., Borg, D. C., Fajer, J., and Felton, R. H., 1973. The chemistry of porphyrin 7r-cations, Ann. N. Y. Acad. Sci.206: 107 – 200.

    Article  Google Scholar 

  • Dunford, H. B., and Stillman, J. S., 1976. On the function and mechanism of action of peroxidases, Coord. Chem. Rev.19: 187 – 251.

    Article  CAS  Google Scholar 

  • Duran, N., Zinner, K., De Baptista, C., Vidigal, C. C. C., and Cilento, G., 1976. Chemiluminescence from the oxidation of auxin derivatives, Photochem. Photobiol.24: 383 – 388.

    Article  CAS  Google Scholar 

  • Duran, N., Oliviera, O. M. M. F., Haun, M., and Cilento, G., 1977. Enzyme generated triplet acetone, J. Chem. Soc. Chem. Commun.1977: 442 – 443.

    Article  Google Scholar 

  • Eisner, T., and Meinwald, J., 1966. Defensive secretions of arthropods, Science153: 1341 – 1350.

    Article  PubMed  CAS  Google Scholar 

  • Fajer, J., Borg, D. C., Forman, A., Felton, R. H. Vegh, L., and Dolphin, D., 1973. ESR studies of porphyrin π-cations: The2alu and2a2u states, Ann. N. Y. Acad. Sci. 206:349–364

    Article  PubMed  CAS  Google Scholar 

  • Fajer, J., Borg, D. C., Forman, A., Alder, A. D., and Varad, V., 1974. Cation radicals of tetraalkyl porphyrins, J. Am. Chem.. 96: 1238 – 1239.

    Article  PubMed  CAS  Google Scholar 

  • Flohe, L., Gunzler, W. A., and Loschen, G., 1979. The flutathione reaction: A key to understand the selenium requirement of mammals, in Trace Metals in Health and Disease, N. Kharasch (ed.), Raven Press, New York, pp. 263 – 286.

    Google Scholar 

  • Forstrom, J. W., and Tappel, A. L., 1979. Donor substrate specificity and thiol reduction of glutathione disulfide peroxidase, J. Biol. Chem.254: 2888 – 2891.

    PubMed  CAS  Google Scholar 

  • Hager, L. P., Hollenberg, P. F., Rand-Meir, T., Chiang, R., and Daubek, D., 1975. Chemistry of peroxidase intermediates, Ann. N. Y. Acad. Sci.244: 80 – 92.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, L. K., Chang, C. K., Davis, M. S., and Fajer, J., 1981. Electron pathways in catalase and peroxidase enzymic catalysis: Metal and macrocycle oxidations of iron porphyrins and chlorins, J. Am. Chem. Soc.103: 663 – 670.

    Article  CAS  Google Scholar 

  • Haun, M., Duran, N., Augusto, O., and Cilento, G., 1980. Model studies of the a-peroxidase system: Formation of an electronically excited product, Arch. Biochem. Biophys.200: 245 – 252.

    Article  PubMed  CAS  Google Scholar 

  • Hazeldean, G. S. F., Nyholm, R. S., and Parish, R. V., 1966. Octahedral ditertiary arsine complexes of quadrivalent iron, J. Chem. Soc. A1966: 162 – 165.

    Article  Google Scholar 

  • Hochachka, P. W., 1974. Regulation of heat production at the cellular level, Fed. Proc. Fed. Am. Soc. Exp. Biol.33: 2162 – 2169.

    CAS  Google Scholar 

  • Hollenberg, P. F., and Hager, L. P., 1973. The P450 nature of the carbon monoxide complex of ferrous chloroperoxidase, J. Biol. Chem.148: 2630 – 2633.

    Google Scholar 

  • Iizuka, T., Kotani, M., and Yonetani, T., 1968. A thermal equilibrium between high and low-spin states in ferric cytochrome c peroxidase and some discussion on the enzyme-substrate complex, Biochim. Biophys. Acta167: 257 – 267.

    PubMed  CAS  Google Scholar 

  • Jarnagin, R. C., and Wang, J. H., 1958a. Investigation of the catalytic mechanisms of catalase and other ferric compounds with doubly labeled O18 labeled hydrogen peroxide, J. Am. Chem. Soc.80: 786 – 787.

    Article  CAS  Google Scholar 

  • Jarnagin, R. C., and Wang, J. H., 1958b. Further studies on the catalytic decomposition of hydrogen peroxide by triethylenetetramine-Fe(III) complex and related substances, J. Am. Chem. Soc.80: 6477 – 6481.

    Article  CAS  Google Scholar 

  • Kanofsky, J. R., 1983. Singlet oxygen production by lactoperoxidase, J. Biol. Chem. 258:5991–5993. Khan, A. U., 1983. Enzyme systems generation of singlet (1Δ g) molecular oxygen observed directly by 1.0–1.8 µ,M luminescence spectroscopy, J. Am. Chem. Soc.105: 7195 – 7197.

    Article  Google Scholar 

  • Khan, A. U., Gebauer, P., and Hager, L. P., 1983. Chloroperoxidase generation of singlet Δ molecular oxygen observed directly by spectroscopy in the 1- to 1.6–p,m region, Proc. Natl. Acad. Sci. U.S.A.80: 5195 – 5197.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A. U., 1983. Enzyme systems generation of singlet (1 Δg) molecular oxygen observed directly by 1.0–1.8 μM luminescence spectroscopy, J. Am. Chem. Soc. 105:7195–7197

    Article  CAS  Google Scholar 

  • La Mar, G. N., and de Ropp, J. S., 1980. Proton nuclear magnetic resonance characterization of the electronic structure of horseradish peroxidase compound I, J. Am. Chem. Soc. 103: 395 – 397.

    Article  Google Scholar 

  • La Mar, G. N., de Ropp. J. S., Smith, K. M., and Langry, K. C., 1981. Proton nuclear magentic resonance investigation of the electronic structure of compound I of horseradish peroxidase, J. Biol. Chem.256: 237 – 243.

    PubMed  Google Scholar 

  • La Mar, G. N., de Ropp, J. S., Latos-Gratzynski, L., Balch, A. L., Johnson, R. B., Smith, K. M., Parish, D. W., and Cheng, R.-J., 1982. Proton NMR characterization of the ferryl group in model heme complexes and hemoproteins: Evidence for the FeIV = O group in ferryl myoglobin and compound II of horseradish peroxidase, J. Am. Chem. Soc.105: 782 – 787.

    Article  Google Scholar 

  • Loew, G. H., and Herman, Z. S., 1980. Calculated spin densities and quadrupole splittings for model horseradish peroxidase compound I: Evidence for iron(IV) porphyrin (S = 1) π-cation radical electronic structure, J. Am. Chem. Soc. 102: 6173 – 6174.

    Article  CAS  Google Scholar 

  • Maeda, Y., and Morita, Y., 1967. Mossbauer effect in peroxidase-hydrogen peroxide compounds, Biochem. Biophys. Res. Commun.29: 680 – 685.

    Article  PubMed  CAS  Google Scholar 

  • Mansuy, D., Lange, M., Chottard, J. C., Guerin, P., Morlierre, P., Brault, D., and Rougee, M., 1977. Reaction of carbon tetrachloride with 5,10,15,20-tetraphenylporphinato-iron (II) [(TPP)FeII]: Evidence for the formation of the carbene complex [(TPP) FeII (CCI2)], J. Chem. Soc. Chem. Commun.1977: 648 – 649.

    Article  Google Scholar 

  • Mansuy, D., Lange, M., Chottard, J. C., Bartoli, J. F., Cherrier, B., and Weiss, R., 1978. Dichlorocarbene complexes of iron (II)-porphyrins—crystal and molecular structure of Fe(TPP)(CCI2)(H2O), Ang. Chem. Int. Ed. Engl.17: 781 – 782.

    Article  Google Scholar 

  • McCay, P. G., Gibson, D. D., and Hornbrook, K. R., 1981. Glutathione-dependent inhibition of lipid peroxidation by a soluble, heat-labile factor not glutathione peroxidase, Fed. Proc. Fed. Am. Soc. Exp. Biol.40: 199 – 205.

    CAS  Google Scholar 

  • Meneghini, R., Hoffman, M. E., Duran, N., Faljoni, A., and Cilento, G., 1978, DNA damage during the peroxidase-catalyzed aerobic oxidation of isobutanol, Biochim. Biophys. Acta518: 177 – 180.

    PubMed  CAS  Google Scholar 

  • Morishima, I., and Ogawa, S., 1978. Nuclear magnetic resonance characterization of compounds I and II of horseradish peroxidase, J. Am. Chem. Soc.100: 7125 – 7127.

    Article  CAS  Google Scholar 

  • Moss, T. H., Ehrenberg, A., and Bearden, A. J., 1969. Mossbauer spectroscopic evidence for the electronic configuration of iron in horseradish peroxidase and its peroxide derivatives, Bio chemistry8: 4159 – 4162.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, T. J., and Morrison, M., 1974. The transmembrane proteins in the plasma membrane of normal human erythrocytes, J. Biol. Chem.249: 7568 – 7573.

    PubMed  CAS  Google Scholar 

  • Murthy, M. R. N., Reid, T. J., III, Sicignano, A., Tanaka, N., and Rossman, M. G., 1981. Structure of beef liver catalase, J. Mol. Biol.152: 465 – 499.

    Article  PubMed  CAS  Google Scholar 

  • Oliviera, O. M. M. F., Haun, M., Duran, N., O’Brien, P. J., O’Brien, C. R., Bechara, E. J. H., and Cilento, G., 1978. Enzyme-generated electronically excited carboxyl compounds, J. Biol. Chem.253: 4707 – 4712.

    Google Scholar 

  • Pasek, E. A., and Straub, D. K., 1972. Tris ( N,N-Disubstituted dithiocarbamato) iron(IV) tetrafluoroborates, Inorg. Chem.11: 259 – 263.

    Article  CAS  Google Scholar 

  • Phillipps, M. A., and Goff, H. M., 1982. Electrochemical synthesis and characterization of the single electron oxidation products of ferric porphyrins, J. Am. Chem. Soc.104: 6026 – 6034.

    Article  Google Scholar 

  • Porter, D. J. T., and Ingraham, L. L., 1974. Concerning the formation of singlet O2 during the decomposition of H2O2 by catalase, Biochim. Biophys. Acta334: 97 – 102.

    CAS  Google Scholar 

  • Reid, T. J., III, Murthy, M. R. N., Sicignano, A., Tanaka, N. Musick, W. D. L., and Rossman, B. G., 1981. Structure and heme environment of beef liver catalase at 3.5 Å resolution, Proc. Nad. Acad. Sci. U.S.A. 78:4767–4771

    Article  CAS  Google Scholar 

  • Remba, R. D., Champion, P. M., Fitchen, D. B., Chiang, R., and Hager, L., 1979. Resonance Raman investigations of chloroperoxidase, horseradish peroxidase, and cytochrome cusing Soret band laser excitation, Biochemistry18: 2280 – 2290.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981a. Electron-nuclear double resonance of horseradish peroxidase compound I, J. Biol. Chem. 256:2118–2121

    CAS  Google Scholar 

  • Roberts, J. E., Hoffman, B. M., Rutter, R., and Hager, L. P., 1981b. 17O ENDOR of horseradish peroxidase I, J. Am. Chem. Soc. 103:7654–7656

    Article  CAS  Google Scholar 

  • Rotruck,. J. T., Hoekstra, W. G., Pope, A. L., Ganther, A., Swanson, A., and Hafeman, D., 1972. Relationship of selenium to GSH peroxidase, Fed. Proc. Fed. Am. Soc. Exp. Biol.31: 691.

    Google Scholar 

  • Schonbaum, G. R., and Chance, B., 1976. Catalase, in The Enzymes, P. D. Boyer (ed.), Academic Press, New York, pp. 363 – 408.

    Google Scholar 

  • Schonbaum, G. R., and Lo, S., 1972. Interaction of peroxidases with aromatic peracids and alkyl peroxides, J. Biol. Chem.247: 3353 – 3360.

    PubMed  CAS  Google Scholar 

  • Schroeder, W. A., Schelton, J. R., Shelton, J.- B., Robberson, B., Apell, G., Fang, R. S., and Bonaventura, J., 1982. The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase, Arch. Biochem. Biophys.214:397–421

    Article  PubMed  CAS  Google Scholar 

  • Schultz, D. E., DeVaney, P. W., Winkler, H., Debrunner, P. G. Doan, N., Chiang, R., Rutter, R., and Hager, L. P., 1979. Horseradish peroxidase compound I: Evidence for spin coupling between the heme iron and a free radical, Eur. J. Biochem.103:102–105

    Google Scholar 

  • Shimomura, E. T., Phillipps, M. A., and Goff, H. M., 1981. Infrared spectroscopy of oxidized metalloporphyrins: Detection of a band diagnostic of porphyrin-centered oxidation, J. Am. Chem. Soc.81: 6778 – 6780.

    Article  Google Scholar 

  • Sievers, G., Asterlund, K., and Ellfolk, N., 1979. Resonance Raman study on yeast cytochrome c peroxidase: Effect of coordination and axial ligands, Biochim. Biophys. Acta581: 1 – 14.

    PubMed  CAS  Google Scholar 

  • Simmoneaux, G., Scholtz, W. F., Reed, C. A., and Lang, G., 1982. Mossbauer spectra of unstable iron porphyrins: Models for compound II of peroxidase, Biochim. Biophys. Acta716: 1 – 7.

    Google Scholar 

  • Splittgerber, A. G., and Tappel, A. L., 1979. Steady state and pre-steady state kinetic properties of rat liver selenium-glutathione peroxidase, J. Biol. Chem.254: 9807 – 9813.

    PubMed  CAS  Google Scholar 

  • Tata, J. R., 1976. Thyroglobulin mystery solved?, Nature (London)259: 527 – 528.

    Article  Google Scholar 

  • Warren, L. F., and Bennett, M. A., 1976. Comparative study of tertiary phosphine and arsine coordination to the transition metals: Stabilization of high formal oxidation state by o-phenylinebased chelate ligands, Inorg. Chem.15: 3126 – 3140.

    Article  CAS  Google Scholar 

  • Wright, J. R., Rumbaugh, R. C., Colby, H. D., and Miles, P. R., 1979. The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes, Arch. Biochem. Biophys.192: 344 – 351.

    Article  PubMed  CAS  Google Scholar 

  • Yonetani, T., Schleyer, H., and Ehrenberg, A., 1966. Studies of cytochrome peroxidase. VII. Electron paramagnetic resonance absorptions of the enzyme and its complex ES in dissolved and crystalline forms, J. Biol. Chem.241: 3240 – 3243.

    PubMed  CAS  Google Scholar 

  • Zinner, K., Vidigal-Martinelli, C., Duran, N., Marsaioli, A. J., and Cilento, G., 1980. A new source of carbon oxide in biochemical systems: Implications regarding dioxetane intermediates, Biochem. Biophys. Res. Commun.92: 32 – 37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Catalases and Peroxidases. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics