Skip to main content

Dioxygen Toxicity

  • Chapter
Biochemistry of Dioxygen

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

  • 107 Accesses

Abstract

We are so accustomed to an aerobic life that we tend to forget that dioxygen and some of the partial reduction products of dioxygen can be very dangerous chemicals. Organisms that require dioxygen commonly require it within relatively narrow limits of concentration. Too high a concentration of dioxygen can be just as lethal to the organism as too low a concentration. Many obligate anaerobes can be killed by dioxygen levels slightly above very low threshold concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Aebi, H. E., and Wyss, S. R., 1978. in The Metabolic Basis of Inherited Disease, J. B. Standbury, J. B. Wyngaarden, and D. S. Fredrickson (eds.), Fourth Edition, McGraw-Hill, New York, pp. 1792–1808.

    Google Scholar 

  • Babior, B. M., 1981. Oxygen as a weapon: How neutrophils use oxygen to kill bacteria, in Oxygen and Life, Royal Society of Chemistry, Burlington House, London, pp. 107–118.

    Google Scholar 

  • Bakker, J., (jommers, F. J., Niewenhuis, I., and Wynberg, H., 1979. Photoactivation of the nematocidal compound a-terthienyl from roots of marigolds (Tagetes species): A possible singlet oxygen role, J. Biol. Chem254: 1841–1844.

    PubMed  CAS  Google Scholar 

  • Barnes, G. and Frieden, E., 1983. Oxygen requirement for cupric ion induced hemolysis, Biochem. Biophys. Res. Commun115: 680–684.

    Article  PubMed  CAS  Google Scholar 

  • Bors, W., Saran, M., and Czapski, G., 1980. The nature of the intermediates during biological oxygen activation, in Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, W. H. Bannister and J. V. Bannister (eds.), Proceedings of the Federation of European Biochemical Societies Symposium No. 62, Elsevier, New York, pp. 1–31.

    Google Scholar 

  • Boveris, A., Cadenas, E., and Chance, B., 1981. Ultraweak chemiluminescence: A sensitive assay for oxidative radical reactions, Fed. Proc. Fed. Am. Soc. Exp. Ziol40: 195–198.

    CAS  Google Scholar 

  • Calderwood, T. S., Neuman, R. C., Jr., and Sawyer, D. T., 1983. Oxygenation of chloroalkenes by superoxide in aprotic media, J. Am. Chem. Soc105: 3337–3339.

    Article  CAS  Google Scholar 

  • Cohen, G., and Heikkila, R. E., 1974. The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents, J. Biol. Chem249: 2447–2452.

    PubMed  CAS  Google Scholar 

  • Dagley, S., 1975. A biochemical approach to some problems of environmental pollution, Essays Biochem. 11: 81 - 138.

    PubMed  CAS  Google Scholar 

  • Fee, J. A., 1980. Is superoxide toxic?, in Biochemical and Clinical Aspects of Superoxide and Superoxide Dismutase, W. H. Bannister and J. V. Bannister (eds.), Proceedings of the Federation of European Studies Symposium No. 62, Elsevier, New York, pp. 41–48.

    Google Scholar 

  • Fee, J. A., 1981. A comment on the hypothesis that oxygen toxicity is mediated by superoxide, in Oxygen and Life, Royal Society of Chemistry, Burlington House, London, pp. 77–97.

    Google Scholar 

  • Fee, J. A., and Hildebrand, P. G., 1974. On the development of a well-defined source of superoxide ion for studies with biological systems, FEBS Lett. 39: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Foote, C. S., 1976. Photosensitized oxidation and singlet oxygen: Consequence in biological systems (W. A. Pryor, ed.), Free Read. Biol. 2:85–133.

    Google Scholar 

  • Foote, C. S., Shook, F. C., and Abakerli, R. A., 1980. Chemistry of superoxide ion. 4. Singlet oxygen is not a major product of dismutation, J. Am. Chem. Soc102: 2503–2504.

    Article  CAS  Google Scholar 

  • Fridovich, I., 1972. Superoxide radical and superoxide dismutase, Acc. Chem. Res5: 321–326.

    Article  CAS  Google Scholar 

  • Fridovich, I., 1974. Superoxide dismutase, Adv. Enzymol41: 35–97.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1975. Oxygen: Boon and bane, Am. Sci63: 54–59.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1979. Superoxide and superoxide dismutase, in Advances in Inorganic Biochemistry I, G. L. Eichorn and L. G. Marzilli, (eds.), Elsevier Press, New York, pp. 67–91.

    Google Scholar 

  • Gerschman, R., Gilbert, D. L., Nye, S. W., Dwyer, P., and Fenn, W. O., 1954. Oxygen poisoning and X-irradiation: A mechanism in common, Science119: 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, B., and Stern, A., 1976. Superoxide anion as a mediator of drug-induced oxidative hemolysis, J. Biol. Chem251: 6468–6470.

    PubMed  CAS  Google Scholar 

  • Gotoh, T., and Shikama, K., 1976. Generation of superoxide radical during autoxidation of oxy- myoglobin, J. Biol. Chem80: 397–399.

    CAS  Google Scholar 

  • Grankvurst, K., Marklund, W., Sehlin, J., and Taljedal, I., 1979. Superoxide dismutase, catalase and scavengers of hydroxyl radicals protect against the toxic action of alloxan on pancreatic islet cells in vitro, Biochem. J. 182: 17–25.

    Google Scholar 

  • Haber, F., and Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. London147: 332–351.

    Article  CAS  Google Scholar 

  • Halliwell, B., 1976. An attempt to demonstrate a reaction between superoxide and hydrogen peroxide, FEBS Lett. 72: 8–10.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., Richmond, R., Wong, S. F., and Gutteridge, J. M. C., 1980. The biological significance of the Haber-Weiss reaction, in Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, W. H. Bannister and J. V. Bannister (eds.) Proceedings of the Federation of European Biochemical Societies Symposium No. 62, Elsevier, New York, pp. 32–40.

    Google Scholar 

  • Hassan, H. M., and Fridovich, I., 1977a. Physiological function of superoxide dismutase in glucose-limited chemostat cultures of Escherichia coli, J. Bacteriol. 130: 805–811.

    CAS  Google Scholar 

  • Hassan, H. M., and Fridovich, I., 1977b. Regulation of superoxide dismutase synthesis in Escherichia coli: Glucose effect, J. Bacteriol132: 505–510.

    CAS  Google Scholar 

  • Held, A. M., and Hurst, J. K., 1978. Ambiguity associated with the use of singlet trapping agents in myeloperoxidase-catalyzed reactions, Biochem. Biophys. Res. Commun81: 878–885.

    Article  PubMed  CAS  Google Scholar 

  • Hill, H. A. O., and Okolow-Zubkowska, M. J., 1981. The exploitation of molecular oxygen by human neutrophils: Spin-trapping of radicals produced during the respiration burst, in Oxygen and Life, The Royal Society of Chemistry, Burlington House, London, pp. 98–106.

    Google Scholar 

  • Kellogg, E. W., Ill, and Fridovich, I., 1975. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system, J. Biol. Chem250: 8812–8817.

    PubMed  CAS  Google Scholar 

  • Kellogg, E. W., Ill, and Fridovich, I., 1977. Liposome oxidation and erythrocyte lysis by enzy-matically generated superoxide and hydrogen peroxide, J. Biol. Chem252: 6712–6728.

    Google Scholar 

  • Kong, S., and Davison, A. J., 1980. The role of interactions between 02, H202, e~ and 02 in free radical damage to biological systems, Arch. Biochem. Biophys204: 18–29.

    Article  PubMed  CAS  Google Scholar 

  • Krinsky, N. I., 1979. Biological roles of singlet oxygen, Singlet Oxygen: Org. Chem. A Ser. Monogr40: 597–641.

    CAS  Google Scholar 

  • Lavelle, F., Michelson, A. M., and Dimitrjevic, L., 1973. Biological protection by superoxide dismutase, Biochem. Biophys. Res. Commun55: 350–357.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, R. E., and Cole, B. C., 1980. Mycoplasma pneumoniae: A prokaryote which consumes oxygen and generates superoxide but which lacks superoxide dismutase, Biochem. Biophys. Res. Commun96: 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Mason, H. S., 1957. Mechanisms of oxygen metabolism, Adv. Enzymol19: 79–234.

    CAS  Google Scholar 

  • Massey, W., Palmer, G., and Ballou, D., 1971. On the reactions of reduced flavins and flavoproteins with molecular oxygen, in Flavins and Flavoproteins, H. Kamin (ed.), University Park Press, Baltimore, pp. 349 - 362.

    Google Scholar 

  • McCord, J. M., Keele, B. B., Jr., and Fridovich, I., 1971. An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase, Proc. Natl. Acad. Sci. U.S.A68: 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  • Melhuish, W. H., and Sutton, H. C., 1978. Study of the Haber-Weiss reaction using a sensitive method for detection of OH radicals, J. Chem. Soc. Chem. Commun. 1978: 970–971.

    Google Scholar 

  • Misra, H., and Fridovich, I., 1971. The generation of superoxide radical during the autoxidation of ferredoxins, J. Biol. Chem246: 6886–6890.

    PubMed  CAS  Google Scholar 

  • Misra, H., and Fridovich, I., 1972a. The univalent reduction of oxygen by reduced flavins and quinones, J. Biol. Chem247: 188–192.

    CAS  Google Scholar 

  • Misra, H., and Fridovich, I., 1972b. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem247: 3170–3175.

    CAS  Google Scholar 

  • Misra, H., and Fridovich, I., 1972c. The generation of superoxide radical during the autoxidation of hemoglobin, J. Biol. Chem247: 6960–6962.

    CAS  Google Scholar 

  • Morita, M., Hamada, N., Sakai, K., and Watanabe, Y., 1979. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas, Agric. Biol. Chem. 43: 1225–1235.

    Article  CAS  Google Scholar 

  • Nanni, E. J., Jr., Angelis, C. T., Dickson, J., and Sawyer, D. T., 1981. Oxygen activation by radical coupling between superoxide ion and reduced methyl viologen, J. Am. Chem. Soc103: 4268–4270.

    Article  CAS  Google Scholar 

  • Porter, N. A., Dixon, J., and Randas, I., 1978. Cyclic peroxides and the thiobarbituric assay, Biochim. Biophys. Acta 441: 506–512.

    Google Scholar 

  • Rifkind, J. M., 1974. Copper and the autoxidation of hemoglobin, Biochemistry13: 2475–2481.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. L., Jr., and Sawyer, D. T., 1981. Facile degradation by superoxide ion of carbon tetrachloride, chloroform, methylene chloride, and p,p’DDT in aprotic media, J. Am. Chem. Soc103: 712–714.

    Article  CAS  Google Scholar 

  • Rosen, H., and Klebanoff, S. J., 1977. Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem252: 4803–4810.

    PubMed  CAS  Google Scholar 

  • Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hofeman, D. G., and Hoekstra, W. G., 1973. Selenium: Biochemical role as a component of glutathione peroxidase, Science179: 588–590.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. B., Bristlein, M., and Bruice, T. C., 1974. Electrophilicity of the 8 position of the isoalloxazine (flavine) ring system: Comment on the mechanism of oxidation of dihydroisoalloxazine, J. Am. Chem. Soc. 96: 3696–3697.

    CAS  Google Scholar 

  • Spikes, J. D., 1977. Photosensitization, in The Science of Photobiology, K. Smith (ed.), Plenum Press, New York, pp. 87–112.

    Google Scholar 

  • Spikes, J. D., and Glad, B. W., 1964. Photodynamic action, Photochem. Photobiol3: 471–487.

    Article  CAS  Google Scholar 

  • Spikes, J. D., and McKnight, M. L., 1971. Dye-sensitized photooxidation of proteins, Ann. N. Y. Acad. Sci171: 149–161.

    Article  Google Scholar 

  • Stelmaszynska, T., and Zgliczynski, J. M., 1974. Myeloperoxidase of human neutrophilic granulocytes as chlorinating enzyme, Eur. J. Biochem45: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Tappel, A. L., 1981. Glutathione peroxidase and its selenocysteine active site. Selenium in Biology and Medicine, Ed. by Spallholz, d. E., Martin, d. L., and Ganther, H. E., Avi Publishing, Westport, Conn., pp. 44–53.

    Google Scholar 

  • Tappel, A. L., and Dillard, C. J., 1981. In vivo peroxidation: Measurement via exhaled pentane and protection by vitamin E, Fed. Proc. Fed. Am. Soc. Exp. Biol40: 174–178.

    CAS  Google Scholar 

  • Tien, M., Svinger, B. A., and Aust, S. D., 1981. Superoxide dependent lipid peroxidation, Fed. Proc. Fed. Am. Soc. Exp. Biol40: 179–182.

    CAS  Google Scholar 

  • Totter, J. R., 1980. Spontaneous cancer and its possible relationship to oxygen metabolism, Proc. Natl. Acad. Sci. U.S.A77: 1763–1767.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C. C., McGrath, B. M., and Carrell, R. W., 1976. Reactions involving superoxide and normal and unstable hemoglobins, Biochem J. 155: 493–502.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Dioxygen Toxicity. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics