Skip to main content

Ground-State Dioxygen

  • Chapter
  • 110 Accesses

Part of the book series: Biochemistry of the Elements ((BOTE,volume 4))

Abstract

The critical characteristic of ground state dioxygen is that it is a triplet instead of a singlet state. This fact contributes to the kinetic barrier in reactions with ground-state dioxygen and also influences the type of reactions that do occur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alyea, H. M., and Backstrom, H. J. J., 1929. The inhibitive effect of alcohols on the oxidation of sodium sulfite, J. Am. Chem. Soc. 51: 90–109.

    Article  CAS  Google Scholar 

  • Barber, M., Faven, J., and Linnet, J. W., 1963. The mass spectrophotometric study of the reaction of methyl radicals with oxygen, Proc. R. Soc. London Ser. A 274: 306–318.

    Article  CAS  Google Scholar 

  • Clyne, M. A. A., and Thrush, B. A., 1963. Rates of elementary processes in the chain reaction between hydrogen and oxygen, Proc. R. Soc. London Ser. A 275: 559–574.

    Article  CAS  Google Scholar 

  • Coulson, C. A., 1947. Representation of simple molecules by molecular orbitals, Q. Rev. Chem. Soc. 1: 144–178.

    Article  CAS  Google Scholar 

  • Fletcher, A. N. and Heller, C. A., 1965. Chemiluminescence quenching terms, Photochem and Photobiol. 4: 1051–1058.

    Article  CAS  Google Scholar 

  • George, P., 1964. The fitness of oxygen, in Oxidases and Related Redox Systems, T. E. King, H. S. Mason, and M. Morrison (eds.), John Wiley, New York, pp. 1–36.

    Google Scholar 

  • Hiatt, R., Mill, T., and Mayo, F. R., 1968a. Homolytic decompositions of hydroperoxides. I. Summary and implications for autoxidation, J. Org. Chem. 33: 1416–1420.

    Article  CAS  Google Scholar 

  • Hiatt, R., Mill, T., Irvin, K. C., and Castleman, J. H., 1968b. Homolytic decompositions of hydroperoxides. III. Radical-induced decompositions of primary and secondary hydroperoxides, J. Org. Chem. 33: 1428–1430.

    Article  CAS  Google Scholar 

  • Howard, J. A., and Ingold, K. U., 1968a. Absolute rate constants for hydrocarbon oxidation. XI. The reactions of tertiary peroxy radicals, Can. J. Chem. 46: 2655–2660.

    CAS  Google Scholar 

  • Howard, J. A., and Ingold, K. U., 1968b. Absolute rate constants for hydrocarbon oxidation. XII. The reactions of secondary peroxy radicals, Can. J. Chem. 46: 2661–2666.

    CAS  Google Scholar 

  • Howard, J. A., and Ingold, K. U., 1968c. The self-reaction of sec-butyl-peroxy-radicals: Confirmation of the Russell mechanism, J. Am. Chem. Soc. 90: 1056–1058.

    Article  CAS  Google Scholar 

  • Ingold, K. V., 1969. Peroxy radicals, Acc. Chem. Res. 2: 1–9.

    Article  CAS  Google Scholar 

  • Kemal, C., Chan, T. W., and Bruice, T. C., 1977. Reaction of 302 with dihydroflavins. 1. N3,5-Dimethyl-1,5-dihydrolumiflavin and 1,5-dihydroisoalloxazines, J. Am. Chem. Soc. 99: 7272–7286.

    Article  PubMed  CAS  Google Scholar 

  • Latimer, W. M. (ed.), 1938. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, Prentice Hall, New York.

    Google Scholar 

  • Mayo, F. R., 1968. Free radical autoxidation of hydrocarbons, Acc. Chem. Res. 1: 193–201.

    Article  CAS  Google Scholar 

  • Methoff, R. C., and Branch, G. E. K., 1930. The kinetics of the reaction of hexaphenylethylene with oxygen, J. Am. Chem. Soc. 52: 255–268.

    Article  Google Scholar 

  • Paris, D. P., 1965. Chemiluminescence of tetrakis-(dimethylamino)-ethylene, Photochem and Photobiol. 4: 1059–1065.

    Article  CAS  Google Scholar 

  • Porter, N. A., Dixon, J., and Ramdas, I., 1978. Cyclic peroxides and the thiobarbiturate assay, Biochim. Biophys. Acta 441: 506–512.

    Google Scholar 

  • Porter, N. A., Weber, B. A., Weenen, H., and Khan, J. A., 1980a. Autoxidation of polyunsaturated lipids: Factors controlling the stereochemistry of product hydroperoxides, J. Am. Chem. Soc. 102: 5597–5601.

    Article  CAS  Google Scholar 

  • Porter, N. A., Roe, N. A., and McPhail, A. T., 1980b. Serial cyclization of peroxy free radicals: Models for polyolefin oxidation, J. Am. Chem. Soc. 102: 7574–7576.

    Article  CAS  Google Scholar 

  • Porter, N. A., Lehman, L. S., Weber, B. A., and Smith, K. J., 1981. Unified mechanism for polyunsaturated fatty acid autoxidation: Composition of peroxy radical hydrogen atom abstraction, R-scission and cyclization, J. Am. Chem. Soc. 103: 6447–6455.

    Article  CAS  Google Scholar 

  • Russell, G. A., 1957. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons: Mechanism of the interaction of peroxy radicals, J. Am. Chem. Soc. 79: 3871–3877.

    Article  CAS  Google Scholar 

  • Russell, G. H., Moye, A. J., and Nagpal, K. L., 1962. Effect of structure on the rate of reaction of carbanions with molecular oxygen, J. Am. Chem. Soc. 84: 4154–4155.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., and Gibian, M. J., 1979. The chemistry of superoxide ion, Tetrahedron 35: 1471–1481.

    Article  CAS  Google Scholar 

  • Sawyer, D. T., and Seo, E. T., 1977. One electron mechanism for the electrondonical reduction of molecular oxygen, Inorg. Chem. 16: 499–501.

    Article  CAS  Google Scholar 

  • Taube, H., 1965. Mechanisms of oxidation with oxygen, J. Gen. Physiol. 49:Part 2, 29–50.

    Article  PubMed  CAS  Google Scholar 

  • Tovrog, B. S., Mares, F., and Diamond, S. E. E., 1980. Cobalt-nitro complexes as oxygen transfer agents: Oxidation of olefins, J. Am. Chem. Soc. 102: 6616–6618.

    Article  CAS  Google Scholar 

  • Walsh, A. D., 1946. Processes in the oxidation of hydrocarbon fuels II, Trans. Faraday Soc. 43: 297–304.

    Article  Google Scholar 

  • Wilshire, J., and Sawyer, D. T., 1978. Redox chemistry of dioxygen species, Acc. Chem. Res. 12: 105–110.

    Article  Google Scholar 

  • Wood, P. M., 1974. The redox potential of the system oxygen-superoxide, FEBS Lett. 44: 22–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ingraham, L.L., Meyer, D.L. (1985). Ground-State Dioxygen. In: Biochemistry of Dioxygen. Biochemistry of the Elements, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2475-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2475-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9501-3

  • Online ISBN: 978-1-4613-2475-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics